
Identification of pests and
diseases in Agriculture -

conventional models vs Artificial
Intelligence

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Enri Miho, BSc
Registration Number 00929003

to the Faculty of Informatics

at the TU Wien

Advisor: O.Univ.-Prof. Dipl.-Ing. Dr.techn. A Min Tjoa
Assistance: Dipl.-Ing. Mag. Dr.techn. Thomas Neubauer

Vienna, 23rd November, 2022
Enri Miho A Min Tjoa

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Enri Miho, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. November 2022
Enri Miho

iii

Acknowledgements

I would like to thank everyone who is working in the fields of machine learning and
especially plant disease identification. Writing this thesis would not have been possible
without the necessary data, made available in the context of numerous articles.
A special thanks goes to my supervisors O.Univ.Prof. Dipl.-Ing. Dr.techn. A Min Tjoa
and Dipl.-Ing. Mag. Dr.techn. Thomas Neubauer for giving me the opportunity to work
on this topic. I am particularly grateful to Thomas Neubauer for his valuable input on
the topic.
I dedicate this thesis to the memory of my uncle, Vasil, who will always be an inspiration
to me. Finally, I want to express my gratitude to my family for their endless support.
They, and also my friends kept me motivated to work hard. My heartfelt thanks.

v

Kurzfassung

Der Pflanzenbau hat einen wichtigen Einfluss auf die Weltwirtschaft. In den letzten Jahren
hat eine effiziente Produktion zunehmend an Bedeutung gewonnen. Dies hat vor allem mit
der steigenden Weltbevölkerung zu tun, dass Probleme wie Unterernährung verursachen
könnte. Krankheiten in der Landwirtschaft sind oft für Ernteverluste verantwortlich.
Deswegen sind Modelle entwickelt worden, die zur Identifikation von Krankheiten und
Schädlingen dienen. Diese Modelle basieren in den meisten Fällen auf der Verwendung von
Bildverarbeitung in Kombination mit Wetterdaten. In der Zwischenzeit hat Künstliche
Intelligenz an Popularität gewonnen, insbesondere weil es die Hardware von heute erlaubt.
Dies ermöglicht neue Wege, um die Modelle zu verbessern.
Ziel dieser Masterarbeit ist es, konventionelle Modelle, die zur Identifikation von Krankhei-
ten und Schädlingen dienen, mit Modellen zu vergleichen, die auf Künstlicher Intelligenz
basieren.
Zuerst werden existierende herkömmliche Modelle untersucht. Danach werden neue Mo-
delle definiert, die auf Künstlicher Intelligenz basieren. Dabei ist wichtig zu beachten, dass
diese die gleichen Daten wie die herkömmlichen Modelle verwenden, um einen Vergleich
zu ermöglichen. Die Modelle werden mit einem Prototyp evaluiert, welcher im Rahmen
dieser Arbeit entwickelt wird. Der Prototyp ermöglicht nicht nur die Identifikation von
Krankheiten. Es wird auch Wert auf die Erweiterbarkeit gelegt, sodass neue Modelle
einfach hinzugefügt werden können.
Anschließend werden die Vergleiche zwischen den Modellen durchgeführt. Es wird ge-
zeigt, wie Künstliche Intelligenz die Identifikation von Krankheiten und Schädlingen
in der Landwirtschaft verbessern kann und was für Vorteile sie mit sich bringt. Das
gilt nicht nur für die Genauigkeit der Identifikation, sondern es wird auch gezeigt, dass
Prozesse automatisiert werden können, um schließlich eine Anwendung in der Praxis zu
ermöglichen.

vii

Abstract

Crop production in agriculture has an important impact on the global economy. In recent
years, effective production has played a key role, considering that the world population is
continuously growing, increasing the risk of malnutrition. Plant diseases are one of the
biggest threats, being often responsible for crop losses. Traditional plant and pest disease
identification models have been developed, which rely on computer vision algorithms
and weather data. On the other hand, Artificial Intelligence has gained popularity in
recent years, also due to better hardware capabilities, offering new ways to improve these
models.
This thesis aims at comparing conventional plant disease identification models with
Artificial Intelligence models.
First, traditional plant disease identification models are identified and explored. Next,
Artificial Intelligence models are defined. These models use the same data as the
traditional ones, making a comparison possible. In order to evaluate the models, a tool is
implemented. It allows applying different models to identify and monitor plant diseases.
It is built with extensibility in mind, allowing implementing and integrating new models.
Finally, conventional and artificial intelligence models are compared. It is shown how
Artificial Intelligence can improve plant disease identification and what benefits it brings
to it, not only in terms of disease identification accuracy, but also allowing for an
automated solution that can be used in practice.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Aim of the work . 2
1.4 Methodological approach . 3
1.5 Structure . 4

2 Background 7
2.1 Plant diseases and Smart Farming . 7
2.2 Plant disease identification AI algorithms 9

3 Related Work 19
3.1 Plant diseases . 19
3.2 Contributions . 20
3.3 Current trends . 21
3.4 Similar work . 22

4 Conventional Models 25
4.1 Definitions . 25
4.2 Conventional model types . 27
4.3 Conventional models . 32

5 AI Models 37
5.1 Data augmentation techniques . 38
5.2 Notations . 40
5.3 AI models for diseases that are caused by cold weather 41
5.4 AI models for diseases that are caused by hot weather 48
5.5 AI models for diseases that are caused by pests 56

xi

6 Evaluation 61
6.1 Metrics . 61
6.2 Prototype . 63
6.3 Results . 65

7 Discussion 81
7.1 Comparison of models for diseases that are caused by cold weather . . . 81
7.2 Comparison of models for diseases that are caused by hot weather . . 83
7.3 Comparison of models for diseases that are caused by pests 86

8 Conclusion 91
8.1 Summary . 91
8.2 Limitations . 92
8.3 Future work . 93

A Code listings and tables 95
A.1 Description of data types . 95
A.2 Code listings for implementing a new model 98
A.3 Endpoint descriptions . 101

B Supplementary materials: source code of PDIS, models, and data
sets 105

List of Figures 107

List of Tables 109

Acronyms 111

Bibliography 113

CHAPTER 1
Introduction

1.1 Motivation
According to a study, “severe acute malnutrition contributes to 1 million deaths among
children annually”[TGL+13]. Others state that “the world will need 70 to 100% more
food by 2050”[GBC+10]. Taking this into account, the efficiency in food production
becomes an important factor for the future, and it has to improve. Crops or plants that
are cultivated in agriculture represent an important basis for food for daily use. These
food crops include popular grains, such as rice and corn, and also vegetables and fruits
that are harvested for human consumption.

One of the major challenges during cultivation that cause a decrease in productivity are
plant diseases. These are mostly caused by pests or other environmental factors. A pest
can be any kind of harmful insect. Identifying and eliminating these diseases and pests
from plants is the key to an efficient food productivity.
In order to deal with plant diseases, farmers use traditional means, such as chemicals and
pesticides. This approach is not selective, i.e. also the healthy plants will unnecessarily
be affected by the usage of these pesticides. Taking and analyzing each plant one by one
takes for the farmers too much time and does not scale well. Also, identifying diseases
requires a good lab infrastructure, which is often unavailable. This is one of the main
reasons why farmers apply pesticides to the entire crop field. There is, however, no
guarantee that this method will always succeed. Sometimes, the only solution is to
remove an infected plant from the field, in order to prevent the disease from spreading
further across the whole field.

Because of this, methods that perform better are imperative. Agriculture is already under-
going a digital revolution. Terms such as the “Fourth Agricultural Revolution” and “Agri-
culture 4.0” have been coined to refer to the impact of technology in agriculture[FNJ19].
This includes the identification of diseases and pests by using technology. When it comes

1

1. Introduction

to identifying a disease, the main challenge is to find methods that will have a high
identification accuracy.
Using sensors, cameras and other technologies can speed up the process of identification.
This way, the farmer can quickly find out which plants are infected. They spend less
time searching for problematic plants and can effectively deal with them, helping the
productivity to increase. The application of pesticides is more controlled, since less
material will be wasted. This reduces the impact on the environment. Sensors can detect
problems with plants immediately, which is important to prevent diseases from developing
further. Also, the costs for dealing with the diseased plants will drop. Only an initial
investment is required to integrate all the required technology into the farm.

1.2 Problem statement
The application of technology in agriculture brings a lot of benefits to the farmers, such as
reduced costs and time. Models that deal with the problem of plant disease identification
have been published. They are mostly based on Artificial Intelligence (AI)[Gre14], but
there are other conventional techniques, such as Image Processing[NS20]. Most of these
models expect high-resolution images of plants as an input for further analysis. Mostly,
these images are captured using normal cameras, but sometimes, more sophisticated
cameras are used. Statistical analysis, often based on environmental data, is applied for
forecasting diseases.

It is important to choose a model that proves to be effective. Given some information
about a plant, the model should be able to detect whether a plant has a disease or not,
and also give information about the type of disease. Applying AI to solve this problem is
currently actively being researched. New models have to be proposed from time to time.

In order to propose the right model, it is necessary to compare it with other models.
Conventional approaches have their limitations. A drawback is that they cannot be
always used as part of a real system that the farmers could use. Some manual work is
needed to identify a disease. This is where AI comes into play. It can improve these
conventional models and allows for an automated solution. It does not only help to
solve the problem of the identification itself, but also gives insight into the features that
characterize a disease.

1.3 Aim of the work
Traditional ways to analyze plants for infections are not very effective when it comes to
time and costs. The aim of this work is to provide a better, quicker, effective and more
intelligent way to obtain disease information about plants. Two problems are treated:

• forecasting whether a plant will have a certain disease or not

2

1.4. Methodological approach

• after the disease has occurred, distinguishing healthy plants from infected ones,
usually done by analyzing images

In order to solve these problems, AI models are defined. An important prerequisite
for these models to work is the data, which is needed for training. Such data can be
found on the internet[HS15][WZL+19]. The images have been captured using IoT-devices.
Sometimes, however, training data is not available. In this case, the data set has to be
manually created. In order to achieve this, different techniques need to be investigated
and applied.

Another important part of this work is comparing the AI models with other (conventional)
models. The goal is to identify these conventional models. A prototype is developed in a
selected common programming language. It is used to evaluate the AI models. It is also
extendable, i.e. new models can be added in the future.

Finally, the conventional models are compared with the AI models. The best AI models
are selected for comparison. Key factors, when it comes to comparing the models, are
the time that is needed to classify the data and the accuracy, i.e. how good the model is
able to correctly identify a plant disease. Moreover, it is discussed how to fine-tune these
models, so that they can give better results, and also what can be expected in the future.

The target group are farm owners who want to monitor their plants, but also people
who want to research on applying AI for plant disease identification. It is expected that
the presented models also have real use in agriculture. They can be implemented and
installed on several IoT devices or drones, in order to monitor the crops. Together with
other monitoring devices, they form a farm management system, which helps people
managing their farms.

1.4 Methodological approach
This section presents the methodological approach applied to this work, in order to solve
the described problem. It gives a short overview about how the research is carried out.
Figure 1.1 depicts the methodology, which consists of the following steps:

1. Literature review
Background information is required and must be collected first. This includes a
general understanding on typical algorithms that are used in AI. Getting familiar
with the types of diseases and pests for a plant is also important.
Also, information about the state-of-art plant disease identification models is needed
before proceeding further. This should help to get an idea on how to define models

2. Model types
Next, research about model types is carried out. They group models together that
solve similar problems. For instance, some models use leaf images to identify a
disease, while others can use weather data to forecast a disease

3

1. Introduction

Figure 1.1: The methodological approach.

3. Conventional models
For each model type, research about conventional models is conducted. It is
important to keep in mind that the selected models are in a way comparable with
AI models

4. Definition of AI models
Then, for each model type, plant disease identification models are defined. These
are researched during the literature review

5. Evaluation
A prototype is implemented. It is used for model evaluation purposes. In order to
evaluate a model, it is important to have a data set, with enough training and test
data. If the evaluation results are not satisfactory, then the AI models are redefined

6. Comparison
Finally, for each model type, the best AI models are selected and compared against
conventional models. Several aspects of the models are compared, including both
qualitative and quantitative ones. The results should also give insight into what
features make a healthy plant different from an infected one

1.5 Structure
This section gives a brief description about the structure of this work. It mainly reflects
the steps of the methodological approach. The current chapter gives an overview about
this thesis, including the motivation behind it. It defines the problem and the methodology
used to deal with the problem.

Chapter 2 provides the required fundamentals needed in this work. It defines what
plant diseases are and gives some information about the integration of technology into
agriculture and its advantages. It also gives an introduction into the field of AI.

In Chapter 3, similar work is researched, which is mainly based on the fundamentals
provided in Chapter 2.

4

1.5. Structure

Chapter 4 identifies model types and conventional models that are used to identify
diseases in plants. These models are used later for comparison purposes.

In Chapter 5, the AI models are defined. This and the upcoming chapters represent a
central part of this work.

A prototype is implemented and used to evaluate the AI models. This is described in
Chapter 6.

In Chapter 7, the conventional models from Chapter 4 are compared with the best AI
models from Chapter 5.

Chapter 8 finalizes this thesis and gives a short summary about the results. Future
research possibilities are also discussed.

5

CHAPTER 2
Background

This chapter gives information about the fundamentals of this work. Since it deals
with the identification of plant diseases, a general overview about plants and diseases is
required and provided in Section 2.1. To make the identification work, algorithms from
the field of study of AI are used. It is important to know how these algorithms work
and how they can be optimized. Section 2.2 lists and describes the most important ones
from machine learning (a sub-field of AI). It is expected that the reader is familiar with
state-of-the-art programming languages, which are required to develop the models and
the prototype.

2.1 Plant diseases and Smart Farming
A plant is a living organism that grows in the earth and has roots and leaves. A food
crop is a plant that can be grown and harvested. The term plant is used interchangeably
with the word crop. Important plants include groins, vegetables, fruits, and more. A
plant disease is something that will prevent the vital functions of a plant. Pathogens are
sometimes created by pests such as insects. Plant pathology is the field of study that
deals with plant diseases that are caused by pathogens. Plant diseases are often triggered
by a combination of

• environmental factors such as temperature, humidity, wind and light

• pathogens

• the susceptible host

This concept is known as the plant disease triangle[Isl18]. If one of the three factors is
missing, then the disease will not occur.

7

2. Background

Figure 2.1 shows an image of a grape leaf, infected with the black rot disease. While in
its early stages the disease cannot be seen yet, after a certain amount of time, it starts to
become visible to the naked eye. When this is the case, it is possible to distinguish healthy
from unhealthy plants, due to color changes and other recurring patterns. Sometimes,
the morphology of a plant is affected as well. For some diseases, a temperature change
can be noticed in the leaves.

Figure 2.1: Black rot on a grape leaf[HS15].

Smart farming (sometimes also known as precision agriculture or precision farming)
refers to the integration of technology into agriculture, with the goal to facilitate and
increase the productivity of crops, decrease the costs, and also reduce the environmental
impact for the farmers[VNF+20]. Different hardware implementations exist, such as:

• sensors that are used for monitoring temperature and humidity of a plant, and
also the water temperature, which is used to feed the plant. Some sensors do not
require making physical contact with the plant. This way of working is known as
proximity sensing[Joh07]

• cameras and satellites, making remote sensing[FRJ86] possible. Remote sensing
is the acquisition of information about plants/fields, without making physical
contact, from long distances, allowing to cover large areas of interest. It has many
applications, such as locating floods or fires, but can also identify fields that are
affected by a certain disease. A drawback of remote sensing is that it is a very
expensive technology

• other common technologies such as GPS for determining the exact location of the
plants

• robotics, performing some of the work that the farmers do. This includes watering
the fields, spraying pesticides, and more

These components are equipped with network modules, i.e. they are interconnected. The
acquired data is fed into a unit that is responsible for analyzing it and can give detailed

8

2.2. Plant disease identification AI algorithms

Artifical Intelligence

Machine Learning

Supervised Learning Unsupervised Learning

Reinforcement Learning

Deep Learning Deep Learning

Figure 2.2: Artificial Intelligence and its subsets.

information about the plants. For instance, it can help farmers to use the right amount
of water and other materials. By using AI, these decisions can be automatically made,
without the intervention from the growers. Another use case is identifying a disease of
interest.

2.2 Plant disease identification AI algorithms

AI refers to the ability of computers to perform tasks that require human intelligence. One
important subset of AI is machine learning[Sam59]. When not using machine learning,
specific instructions have to be provided to solve a problem. In contrast, in machine
learning, solving a problem is learned by training a model with solutions to this problem.
This is, in many cases, easier than implementing an explicit complex algorithm. The
availability of the data (needed to train a model) is imperative. In some situations, this
data can also be generated, leading to an improvement of the accuracy of the model.

Machine learning is an old concept, but has only started to gain popularity in recent years.
Its algorithms require a lot of computation power, not available in the past. The most
important fields of study of machine learning are supervised learning and unsupervised
learning[SA13]. One widely used model is deep learning[LBH15]. This learning model
is based on artificial neural networks, which try to simulate the way the human brain
works. Depending on the way it is used, deep learning can be supervised or unsupervised.
Figure 2.2 depicts the hierarchy of AI and its subsets. Machine learning represents a
very large subset of AI, which is why they are often considered the same. Another subset
of machine learning is reinforcement learning[KLM96]. In this area, software agents
perform actions and depending on whether they are successful or not, they get rewarded

9

2. Background

or penalized. The goal is to maximize the reward. However, reinforcement learning is
not very suitable for identifying plant diseases.

2.2.1 Supervised Learning
In supervised learning, a set of input data (training data) is given, for which it is known
what the output data should be. This data is used to train a model, which can later
calculate output data for some given new input. The output is known as the label or
class, which is why the terms labeled or classified data are often used. Each training
element, sample or example of the input data consists of one or more features, and the
goal is to find a connection between these features and the labeled data. Unlabeled data
is known as test data and is used to test how well the model performs.

More formally, consider N = ((X1, y1), ..., (Xn, yn)) to be the ordered set(because of the
indices)1 of all n labeled training examples, where Xi represents the feature vector of the
training example i and yi the output for that vector. In supervised learning, a hypothesis
function h(X) must be constructed. It computes for each training example a close value
to the labeled output, i.e. the error or difference between the computed output and the
expected labeled output is as small as possible. This function is used to compute or
predict the output for some new unlabeled data.

Finding the right function is a minimization problem, which depends on some parameters.
The success of the algorithm depends on these parameters too. Literature that describes
how to find and optimize these parameters exists[SCZZ19]. Determining h(X) is beyond
the scope of this thesis. However, a short intuition is given. The accuracy of h(X) is
measured using a cost function J(Θ), where Θ represents the parameter vector, which
has the same number of elements as the feature vector X. These parameters are also
known as the weights. The cost function quantifies the error of h(X), i.e. by how much
the results produced by the estimated function h(X) differ from the desired output. For
instance, for linear regression, a machine learning algorithm from statistics, the mean
squared error is used as a cost function, which represents the average difference between
the results produced by h(X) and the expected outputs. The goal is to minimize the
error computed by the cost function. This is nothing but finding the minima of the
cost function. One popular optimization algorithm that achieves this is the stochastic
gradient descent[BB07] algorithm, which tries to find the minima of the cost function in
an iterative way. Each parameter θi is randomly initialized at the beginning. With every
iteration step, each parameter θi is updated using θi − α ∂

∂θi
J(Θ), where α is the learning

rate and Θ the parameter vector from the previous iteration.

There are two types of supervised learning problems: classification and regression
problems[Alp14]. In classification, the class for some input data is computed. This class
is estimated within a discrete set of values. A typical classification problem would be
classifying handwritten digits, given as images, into ten classes, from zero to nine. In
regression, the value that is computed for an input is continuous. Predicting house prices,

1An ordered set is considered as a vector.

10

2.2. Plant disease identification AI algorithms

depending on some features of a house, such as the number of rooms and the location,
would be a typical example.

One of the most popular regression methods is linear regression[Fre05]. The goal is to
find a linear function for the input data that computes the desired output. The vector of
the input data consists of only one feature. Figure 2.3 shows an example. The straight
line fits to the data points, minimizing the distance to all points as good as possible.

More generally, if the input data has more than one feature, then the method is known
as multivariate linear regression[Fre05]. The function is given as h(X) = X � Θ, where
� represents the sum over the element-wise multiplication for two vectors. The goal is to
compute the parameter vector Θ.

Feature

O
ut

pu
t

Figure 2.3: Linear regression for a data set with one feature.

Sometimes, it is not possible to find a linear function that will fit to the data well.
To create a non-linear function, features are converted to polynomial ones and added
together: h(X) = Θ0 + Θ1 � X + Θ2 � X2 + · · · + Θk � Xk, where k is the polynomial
degree.

However, fitting to the data too perfectly might cause this function to not generalize to
new data. This problem is known as overfitting. A function that does not fit the training
data well is said to underfit the data. Refer to Figure 2.4 for a visual description. In
order to prevent overfitting, regularization can be used. By adjusting the importance of
some parameters, it reduces the impact of some features, which might be responsible for
overfitting.

Logistic regression[Cra02] is a classification method. Since linear regression computes
continuous values, it cannot be used for classification purposes. These values have to
be mapped to a discrete set of values. In order to achieve this, the logistic function2

2The logistic sigmoid function is given as f(x) = 1
1+e−x and maps numbers to an interval [0, 1].

11

2. Background

Feature

O
ut

pu
t

(a) Overfitting
Feature

O
ut

pu
t

(b) Underfitting

Figure 2.4: Overfitting and underfitting.

is used: h(X) = 1
1+e−Θ�X , where Θ � X is the value computed by the (multivariate)

linear regression function. The computed output indicates the probability that the input
will belong to one class or another. The default probabilistic threshold is 0.5. However,
sometimes, changing this parameter might improve the algorithm. This is the way this
method works for binary classification, i.e. the number of classes is two.

For the case of k classes, where k > 2, for each class, a binary classification problem is
defined, where the two classes are:

• the class itself

• the union of the other k − 1 classes

For each classification problem, the probability is computed that a certain input belongs
to a class. From the computed probabilities, the class with the highest wins. This method
is also known as the One-vs-all method[Bis06].

In order to prevent overfitting, but also underfitting, logistic regression uses regular-
ization. One popular technique is L2 regularization or ridge regression[HK00]. The
term λ

2n

�m
i=1 θ2

i is added to the cost function J(Θ), which has to be minimized using
an optimization algorithm, such as stochastic gradient descent. The hyperparameter
λ is known as the regularization parameter. A large value of λ penalizes more the m
parameters of the vector Θ and will lead to underfitting, while a small value might lead
to overfitting.

In this thesis, the function lr(T, Y, o) computes the hypothesis function h(X) for logistic
regression and has the following parameters:

• T = (X1, · · · , Xn) is the vector of n training examples, where each example X is a
feature vector

12

2.2. Plant disease identification AI algorithms

• Y = (y1, · · · , yn) is the vector of the corresponding classes

• o is the optimization algorithm. Gradient descent is mentioned as the default
method to minimize the cost function. However, there do exist other methods that
can achieve the same, but in a more optimized way:

– L-BFGS [ZBLN97], which is a quasi-Newton method that is used to find the
minima of a function. L stands for limited, meaning that this method is able
to work well with limited memory

– Stochastic Average Gradient (SAG)[SRB13] and SAGA[DBLJ14], which work
well with large data sets

A more detailed description of these optimization algorithms is beyond the scope
of this work. They converge much faster than stochastic gradient descent and work
well with numerous features. o can be respectively one of "lbfgs", "sag" or
"saga"

The function uses L2 regularization with λ = 1. The logistic regression model3 from
Scikit-learn[PVG+11] provides a reference implementation. As a cost function, the
negative log-likelihood4 is used. At the beginning, the weights of the vector Θ are
randomly initialized.

Support-vector machines[CV95] are popular models used for classification problems, but
also for regression. For classification, the objective is to classify the data, using an
n-dimensional hyperplane, where n represents the number of features of the data. In
simple terms, this hyperplane must separate the data the best way possible, i.e. the
width of the hyperplane must be maximized. This width is also known as the margin.
Maximizing the margin helps to prevent overfitting. In case the data is linearly separable,
the two ends of hyperplane are given as follows:

• Θ � X − b = 1, i.e. values greater or equal to 1 belong to the class with label 1

• Θ � X − b = −1, i.e. values less or equal to −1 belong to the class with label -1

The original labels need to be mapped to labels 1 and -1. If there are more than two
classes, then the One-vs-all method can be used. The goal is to find values for Θ and
b such that the margin, i.e. the distance between these two hyperplanes, is maximized.
Explaining how to do this is beyond the scope of this work. However, there are important
hyperparameters:

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

4https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_
loss.html

13

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html

2. Background

• the regularization parameter C controls how much misclassified data should be
allowed. The smaller C, the larger the margin will be, allowing more data to be
misclassified

• sometimes, the data cannot be separated using linear functions. This is where
kernels[VTS04] come into play. A kernel applies a transformation to the data,
allowing this data to be separable. The parameter γ decides how much influence
the data has on the margin. A small γ will have an impact on the curvature of the
hyperplane

The function svm(T, Y, k) computes the hypothesis function h(X) for support-vector
machines and has the following parameters:

• T = (X1, · · · , Xn) is the vector of n training examples, where each example X is a
feature vector

• Y = (y1, · · · , yn) is the vector of the corresponding classes

• k is the kernel. Three kernels can be configured:

– the linear kernel, as the name suggests, works well, if the data is linearly
separable. It is one of the most common kernels and can perform well, if the
number of features is high. The regularization parameter C has the value 1.0

– the polynomial kernel, which is used for non-linear data. It tries to add
polynomial features, usually by combining the features together. Increasing
the polynomial degree might help to make the data separable (since it might
not be linearly separable as it is in its original form). C has the value 1.0 and
γ the default value from the implementation of Scikit-learn[PVG+11]

– the radial basis function (RBF) kernel, which also adds new features by
combining the existing ones, but the new features it introduces are different.
It can be more time-consuming, but is often more accurate. C has the value
1.0 and γ the default value from the implementation of Scikit-learn[PVG+11]

k can be respectively one of "linear", "poly", or "rbf"

The hinge loss5 is minimized using stochastic gradient descent. The support-vector
machine model6 from Scikit-learn[PVG+11] provides a reference implementation.

5https://en.wikipedia.org/wiki/Hinge_loss
6https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#

sklearn.svm.SVC

14

https://en.wikipedia.org/wiki/Hinge_loss
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html##sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html##sklearn.svm.SVC

2.2. Plant disease identification AI algorithms

2.2.2 Unsupervised Learning
Unsupervised learning works without knowing the belonging class of a training example,
the data is said to be unlabeled. The goal is to find some structure in the data, without
knowing anything about it in advance. A typical example of an unsupervised learning
problem would be grouping related news stories together or email type classification,
based on the content(spam/social/promotions/etc.). There are two important groups of
unsupervised learning approaches:

• clustering, which groups similar data together. One popular clustering algorithm
is k-means. This algorithm groups the input data into k clusters, usually by
calculating the distances between the data points

• anomaly detection is a technique that identifies rare data elements in a data
set. It can be used for data pre-processing purposes, regarding the filtering of
abnormal data. It is typically used to detect frauds or anomalies in manufacturing.
Furthermore, it tries to determine high and low probability features in a data set

2.2.3 Deep Learning
Deep learning is a method that is based on artificial neural networks[Neg01]. It can
be used to solve supervised and unsupervised learning problems. Neural networks have
become a state-of-art technique for many problems. Using linear regression or support-
vector machines to learn from data, which has many features, might be computationally
expensive, due to the polynomial terms.

Artificial neural networks try to simulate the way neurons in the human brain work.
The brain contains lots of interconnected neurons. The neuron’s input wires are called
dendrites and the output wires are called axons. A neuron will receive signals through
its dendrites, process these in some fashion, and use the axons to send signals to other
neurons. An artificial neural network consists of many connected neurons.

x2 Σ a

Activation
function

y

Output

x1

x3

b

w1

w2

w3

Figure 2.5: An artificial neuron.

Figure 2.5 depicts an artificial neuron. It consists of a number of inputs (dendrites), does
some computation on these inputs and finally produces an output (axon). The function

15

2. Background

that performs the computation is known as the activation function. The weighted sum
over all the inputs is computed, and the result is fed into the activation function a. The
logistic sigmoid function and the rectifier7 are popular activation functions. To shift
the activation function, a bias term is often added to the weighted input sum. The
calculation a neuron does is given formally as y = a(�n

i=1 wixi + b) = a(Θ � X + b),
where wi is the weight(parameter) for input xi and b the bias term.

I1

I2

I3

I4

H1

H2
O1

Input
layer

Hidden
layer

Output
layer

Figure 2.6: An artificial neural network with three layers.

Figure 2.6 shows an example of an artificial neural network with three layers. An artificial
neural network consists of an input layer, zero or more hidden layers and an output layer.
Each layer contains a number of neurons. Each neuron of a layer l is connected in some
way to neurons of the next layer l + 1. An output y produced by a neuron at layer l
serves as an input for a neuron at layer l + 1. Similar to other machine learning models,
the goal is to find the parameters that fit to the data the best. The parameters in this
case are the weights. For each training example, the final output produced by the neural
network has to be as close as possible to the expected output (in case of supervised
learning). This is done by adjusting the weights. The process of calculating the final
output (starting off from the input values) for a neural network is known as forward
propagation.

More formally, a layer function maps an output vector from a previous layer (or inputs)
to another output vector, to be used by the next layer.

A fully-connected layer is defined as fc(I, in, out, a), where:

• I is a vector with in elements, each from R, i.e. there are in neurons from the
previous layer

7The rectifier or ReLU (Rectified Linear Unit) computes the maximum positive value for an input
and is given as f(x) = max(0, x).

16

2.2. Plant disease identification AI algorithms

• out is the number of produced outputs, i.e. the number of neurons for the layer.
Each neuron receives in inputs and the respective in weights must be learned

• a is the activation function for each neuron

In simple terms, each neuron from the previous layer is connected to each neuron of this
layer. The output of the function is a vector with out elements, each from R. For a
reference implementation, see the linear transformation8 from PyTorch[PGM+19].

In order to train a neural network with a hypothesis function h, for each training example
X, the following steps are performed:

1. by using forward propagation, the prediction h(X) is computed

2. a cost function J(Θ) is selected

3. for each parameter θ of the cost function, the partial derivatives(or gradients)
∂
∂θ J(Θ) are computed. This is known as backward propagation

4. using an optimization algorithm, such as stochastic gradient descent, J(Θ) is
minimized, with the help of the computed gradients. This step will update the
weights in Θ for h

Convolutional neural networks[LBBH98] have proven to be very effective in image analysis
and classification. Using traditional neural networks, where each layer is fully-connected,
is very expensive from a computational point of view. Also, in image classification,
dependencies between pixels are important, in order to detect recurring patterns. Us-
ing a traditional neural network, this information is lost. The same holds for other
learning algorithms, such as logistic regression and support-vector machines. A typical
convolutional neural network consists of the following layers:

• convolution layers apply filters(also known as kernels) of the same size, by sliding
them through the entire image. The stride defines by how many pixels the kernel
should be moved. Feature maps are produced, which indicate where in the image
the filter matches the most. A filter is nothing but a set of weights, which have
to be learned. The function conv2d(I, in, out, kernel, stride, a) is responsible for
computing the convolution operation where:

– I must be a 3-dimensional vector with shape9 (l, h, w) (there are inputs from
(l ∗ h ∗ w) neurons), where l is the number of layers or channels of the image(in
case of RGB l = 3), h the height and w the width. This vector might be the
initial input of the neural network, or it might be an output produced by
another (hidden) layer

8https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
9The shape of a vector is the number of elements for each dimension. The shape is represented as a

vector itself. The lowest dimension contains elements from R.

17

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

2. Background

– in must match l

– out is the number of (filtered) images to be created
– kernel is the size of the kernel that should slide through the image, represented

as (kh, kw), with height kh and width kw

– stride is the stride
– a is the activation function

In order to create a filtered image, for each image layer and kernel position, the
convolution10 operation is applied regularly. After this is done, the filtered image
F is created. The height of the image will be hf = (h − kh)/stride + 1 and the
width wf = (w − kw)/stride + 1, i.e. a 2-dimensional vector with shape (hf , wf) is
produced.
Formally, let m and n be the position of the kernel in the image I. For each position,
the convolution is computed by a neuron as

Fm,n = a(�l
d=1

�m+kh
i=m

�n+kw
j=n wd,i,jId,i,j + b)

This process is repeated out times, i.e. the resulting vector will have the shape
(out, hf , wf) and the number of neurons will be out ∗ hf ∗ wf . For a reference vector
implementation, see the convolution operation11 from PyTorch[PGM+19]

• max pooling layers reduce the resolution of an image by sliding patches over the
image and applying max pooling12. Visually speaking, this allows preserving the
spatial invariance, i.e. forms will still be visible as before, they might just be slightly
deviated and with a worse quality. The function maxpool2d(I, kernel, stride)
reduces the size of the images, but does not change the number of them. The size of
the new filtered images is computed the same way as in conv2d. For each position
of the kernel K, max pooling takes the highest value of K and sets Fm,n. This
process is repeated for each input vector
Technically, the max pooling layer does not use the concept of neurons, there are
no weights to learn. However, it is treated as a layer in literature. A reference
implementation13 is provided by PyTorch[PGM+19]

• fully-connected layers

These layers can be combined in different orders and occurrences, in order to improve
the algorithm.

10Given an image, the convolution operation is the sum over all weighted pixel values.
11https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
12Max pooling takes the highest pixel value from an image.
13https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

18

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

CHAPTER 3
Related Work

This work aims at identifying conventional plant disease identification models, to be
compared with AI models. In this chapter, related work in the research area of this thesis
is presented. Contributions and trends are discussed. This chapter is divided into four
parts:

• Section 3.1 describes the plant diseases that can be predicted/identified by the
models

• Section 3.2 discusses the contributions of this work to the literature. This includes
the research fields that it touches and what value this work adds to them. Plant
disease identification is a research field that is still growing and has gained attention
in recent years

• Section 3.3 gives an overview about the existing research in the area of plant disease
identification. State-of-the-art techniques are shortly listed

• Section 3.4 presents similar work that solves a similar problem to the one defined
in Section 1.2. This section tries to motivate why comparing AI models with
conventional models should be researched more

3.1 Plant diseases
Plant diseases that are taken into consideration are divided into three categories, depend-
ing on their causes:

• Category of plant diseases that are favored by cold weather. Two are the
diseases of interest:

19

3. Related Work

– late blight of tomato, which is caused by the pathogen Phytophthora infestans,
is favored by cool and wet weather. Initially, infected leaves become irregular
in shape and lesions are identified as spots, colored from light to dark brown.
The entire tomato fruit may be attacked later too

– stripe rust of wheat is one of the major wheat rust diseases, which develops with
low temperatures in late winter. Caused by the fungus Puccinia striiformis,
this disease is characterized by yellow streaks on the leaves. The fungus grows
in the plant and produces spores, causing greater loss of water in the plants
and making them collapse

• Category of plant diseases that are favored by moderate to hot weather.
Three diseases are identified:

– northern leaf blight of corn is a disease that can develop with moderate
temperatures and some wetness. The pathogen is the fungus Exserohilum
turcicum and symptoms are canoe-shaped lesions in brown color. The diseased
areas allow the fungus to grow and develop further, causing serious harm to
the plant

– Fusarium wilt is caused by the fungus Fusarium oxysporum and development
is favored by hot and dry weather. It may cause different types of tea and
cucumber diseases, and others. This disease restricts water flow in the plant,
making the leaves to wilt and turn yellow. Due to lack of water, the yellow
areas may have a higher temperature. Deficiency of water may cause serious
damage to the plants

– sheath blight of rice is a disease, which occurs in areas with high temperatures,
around 30 degrees. It is a fungal disease, caused by Rhizoctonia solani. Lesions
have the form of an ellipsis and are in gray color

• Category of plant diseases that are caused by pests.
Chlorosis occurs due to lack of chlorophyll, which is needed to perform the photo-
synthesis. This deficiency of chlorophyll can be caused by missing amounts of iron
in the plant. The chlorosis virus can be carried also by pests, such as whiteflies,
and transmitted into the plants. This disease may affect different types of plants.
Typically, the affected leaves become yellow over time and the entire plant may die

3.2 Contributions
Section 1.1 motivates why identifying and detecting infected plants is of great importance
in agriculture, from a cost and productivity perspective. Detecting a disease early can
have an economic impact. In recent years, identifying plant diseases is receiving a lot
of attention and is actively being researched. Mostly, algorithms from the field of AI
are used. The mathematical approaches behind these algorithms have existed for a long
time, but only during the last years the computational power has increased up to a point
that it is possible to run these approaches and make practical use of them.

20

3.3. Current trends

In the context of this work, different AI methods are implemented for plant disease
identification. In Chapter 4, an overview is given about what kind of conventional models
can be used to solve this problem. It is shown in the next chapters how AI can be used
to improve these conventional models. This is done by comparing these models with
each other, quantitatively, but also qualitatively. The defined models that are based on
machine learning and convolutional neural networks represent a good contribution to the
(still evolving) research field of plant disease identification.

Plant disease identification is a special area of interest in precision agriculture (farming),
which deals with the integration of technology into the farming processes. The methods
in this thesis can be combined and become part of these processes, contributing to an
improved farming management system, allowing to monitor the development of the
plants.

Convolutional neural networks are very useful when it comes to the extraction of features
from an image. In the concrete case, these features can represent characteristics of a
disease, such as color, holes and other patterns. It can help to discover new features
that characterize a disease. Consequently, it is of particular interest for people who are
diagnosing diseases manually in a laboratory. This is an important contribution to the
research field of plant pathology, which is the scientific study of the development of plant
diseases.

Finally, it is worth mentioning that the presented approaches in this work are not only
limited to researching purposes. They can be used also in practice. This depends, however,
on the available data, since it is required for training purposes. If this data is not available,
it has to be acquired in some fashion. The approaches could be implemented as a mobile
application or as part of a broader monitoring system for large fields of plants. Robots
could make use of these techniques, in order to selectively treat or eliminate infected
plants.

3.3 Current trends
Common ways of identifying plant diseases include serological and microbiological tech-
niques, or just visual diagnostics. Since these methods are time-consuming and require
experienced people, better approaches are imperative. Most of the current efforts for
detecting plant diseases have been made using algorithms from AI. The approaches use
convolutional neural networks and the algorithms are trained with images of leaves.

Selvaraj et al. [SVR+19] developed a banana disease detection system, in order to
support farmers. Oppenheim et al. [OSET18] similarly did this for tomato diseases, by
analyzing the leaves. Others did the same for various plant diseases. Venkataramanan
et al. [VA19] gave a general overview about different convolutional neural networks
techniques and identified their advantages and disadvantages. Another popular method
are support-vector machines. Iniyan et al. [IJM+20] used support-vector machines, but
also artificial neural networks for the detection of common crop diseases, such as blight

21

3. Related Work

and rust. Jasim et al. [JAT17] compared the performance of support-vector machines on
detecting infected leaves. Prathusha et al. [PMS20] used k-nearest neighbors algorithm
and suggested that it is one of the most successful algorithms. Sharma et al. [SMS20]
used Bayes classifiers to identify rice diseases.
Also, unsupervised learning has been used to identify plant diseases. Sankaran et al.
[SVN20] used k-means clustering to detect infected leaves. Türkoğlu et al. [tH19] made
use of the presence of pests in plants, besides analyzing the plants. Kaur et al. [KPG18]
gave information about state-of-the-art disease identification techniques, which are trained
with leaf images.

Applying machine learning is not only limited to using digital images (from a close range)
as an input. Rocha et al. [RAPSN20] used satellite images to train different machine
learning models, in order to detect coffee crop diseases. Nagasubramanian et al. [NJS+19]
used hyperspectral images. These are useful for situations where a disease is not visible
yet to the naked eye.
Another technique is the identification using thermal images, where pixels in a certain
color indicate the temperature of some part of a leaf. Sometimes, there exists a correlation
between the temperature in regions of a leaf and the presence of a pathology. Oerke et
al. [OSDL06] used regression models for this problem. Thermal imaging still has the
potential to score good results in detecting some diseases.

There do exist other identification ways, when it comes to forecasting a disease. One
methodology made use of weather data. Shah et al. [SPDWM19] used regression models
based on series of weather data over time to predict plant disease epidemics. Khattab
et al. [KHI+19] defined a monitoring system for forecasting diseases. A weather station
equipped with different sensors such as temperature and humidity sensors was used to
collect data over time and to feed a prediction algorithm. Several attempts have been
made to use fluorescence spectroscopy to analyze the reflectance of the plants, since it
can be related to the presence of an infection. Saleem et al. [SAAB20] used laser induced
fluorescence spectroscopy, in order to predict diseases in grapefruit plants.
Mahlein at al. [Mah15] discussed some future techniques regarding plant disease detection,
not necessarily based on AI.

3.4 Similar work
From the previous section, it is noticeable that the majority of the approaches is focusing
on the identification of diseases. It is also of particular interest to compare approaches
with each other, for instance in terms of accuracy, but not only. Comparative work is
also present in this field of research. Mostly, AI models are compared with each other.
Academic writing that compare these models with others that are not based on AI
(also known as conventional models in the context of this work), rarely exist. First,
comparative research gives details about what the advantages and disadvantages of a
model are and also, whether to choose a model over another one or not. Concretely, it
shows the benefits of the application of AI techniques. Second, nearly all the models

22

3.4. Similar work

are using close-range leaf images as an input. More models need to be explored and
compared. Third, most models are focused too much on identifying a disease after it has
appeared, i.e. it is visible to the human eye. Forecasting a disease can have an important
impact on productivity and economy. The approaches need to be built with practical use
in mind as well. For instance, it should be possible to use them in a real farm.

Nevertheless, comparing AI models with each other is also valuable for research, since
it describes methods on how to compare models. Sandhu et al. [SK19] discussed and
compared plant disease detection techniques, with close-range leaf images as input data.
Pattnaik et al. [PP20] also reviewed advanced machine learning techniques for the
identification of various plant diseases. Barbedo [Bar20] discussed different machine
learning approaches using proximal images and how these approaches can be improved.
Ngugi et al. [NAAZ20] discussed recent advancements in image processing methods.

23

CHAPTER 4
Conventional Models

This chapter describes the conventional models that are compared with AI models. First,
the concept of a model type is defined, with respect to plant disease identification. Models
give a concrete implementation for these model types. Then, the conventional model
types are described, which are nothing but a subset of general model types. Conventional
model types do not use methods from AI. For each conventional model type, models that
implement them are shortly listed and summarized in Table 4.1. Finally, some other
model types are described, with the goal to extend this work further in the future.

4.1 Definitions
A plant disease model type is an abstract function which, given some input, returns
information about a plant. It may predict or identify the presence of a disease. Alter-
natively, it may also return information about the severity of the disease. It gives a
high-level description for a plant disease. This function is abstract, it describes high-level
details about the inputs and outputs, i.e. (informal) constraints that have to be fulfilled.
A disease model type may have one or more disease models. Each model defines or
implements a concrete function for the model type. This function complies in some way
with the required high-level rules that are set by the model type.
One important limitation of the models that are implemented in the context of this work
is the fact that, in general, they deal with only one disease (mostly for one type of plant)
at a time, i.e. they are not able to identify or predict multiple diseases, given some plant
information. Models that can detect multiple diseases are therefore not discussed further.
However, it should be possible to combine these disease-specific models so that they form
a broader disease model. There are challenges regarding these kinds of models, which
have to be addressed. Certain diseases are visually similar and easy to mix up. Also,
many diseases are caused by similar environmental changes, for example, when it comes
to predicting them.

25

4. Conventional Models

Figure 4.1: A plant disease model type is an abstract function that identifies/predicts a
plant disease (severity), given some input data.

To give the reader a better intuition regarding disease model types, the ideas are depicted
in Figure 4.1. A disease model type has the following components:

• the type of plant(s) that should be checked against a disease

• the disease(s) of interest

• the input data, which has to be acquired in some fashion. Acquiring this data is
not always easy and often represents a major challenge. The structure of the input
data is a constraint that distinguishes one model type from another

The input data can be obtained in different ways and can have one of the following types:

• weather data about the location of the plant

• thermographic (thermal) images of plant leaves

• images of pests on leaves, from a close range

• images of leaves, also from a close range

• satellite images of fields

This list is not exhaustive. However, it represents the most important input types. The
first three types can be used to predict a disease, the others are used for identification
purposes, i.e. after the disease is present and visible to the naked eye. Therefore,
depending on the inputs, the model type produces two kinds of outputs, answering one
of the two questions:

• is a certain disease present or not, and if possible, with what severity?

• will a certain disease be present or not, and if possible, with what severity?

The input and output data distinguishes a model type from another. Two categories of
model types do exist:

26

4.2. Conventional model types

• model types that can identify a disease

• model types that can predict a disease

A conventional disease model type is also a disease model type, but it has some limitations,
i.e. it is a subset of general model types. The defined models for conventional model types
are limited to not using methods from AI. This is to clearly distinguish them from AI
models, which will be used later for comparison purposes. Since these conventional disease
model types are always used in the context of plant diseases, the shorter term conventional
model type is used. The terms model and model type are sometimes interchangeably
used. It should be clear from the context which one is meant.

There are other traditional ways to identify plant diseases. One way is visual diagno-
sis, which requires human experts, who manually try to identify pathogens or disease
symptoms. Other methods include microbiological, molecular and serological techniques.
These traditional methods are not discussed further, nor they are used for comparison
purposes. First, they are time-consuming and not very efficient. In order to be more
efficient, there are specific guidelines that can be followed, but it still remains a major
problem. Second, they are not technology-based, i.e. it is difficult to compare them
directly with methods from AI, from a qualitative and quantitative perspective.

4.2 Conventional model types
In this section, model types are described, for each type of input data.

4.2.1 Conventional model type based on images from a close range
One of the most common model types uses images as the input. Models should have the
following characteristics:

• as an input, images show leaves of plants from a close range, but in some situations
also the whole plant

• as an output, they should identify whether a disease is present or not

The images are acquired from a close range, therefore they can show very detailed
information. Data sets for this purpose, such as the PlantVillage data set[HS15], are
available. The acquisition of the images can be done in different ways. A common
method is to manually capture the images, using a digital camera. Since this is a very
time-consuming method, the process can be automated by using robots that regularly
capture the plants. Usually, images come in RGB format.

Conventional models usually use computer vision algorithms to identify a disease. They
analyze visual aspects (also known as features) of the leaves or plants. First, a feature
of interest is defined, which distinguishes healthy leaves or plants from infected ones.

27

4. Conventional Models

(a) (b)

Figure 4.2: Segmented (a) and grayscale (b) images of late blight in tomato leaves, from
the PlantVillage data set[HS15].

Depending on the plant disease, different features might be selected. Common symptoms
of a disease include change in color and form of a leaf. The algorithm is then implemented
around these features.

In order to make the models produce better results, sometimes it is necessary to do some
pre-processing on the input data. Since the background of the image is of low interest
and can also cause problems detecting a disease, it is often removed. This technique is
often known as segmentation. It is a widely used method from computer vision1, where
only objects of interest are extracted from an image. Other challenges regarding the
detection of diseases from images are different light conditions and angles of the images
that were taken. Sometimes, it can be an advantage for some diseases to analyze not the
colored version, but the grayscale2 version of an image.

4.2.2 Conventional model type based on the presence of pests
Another model type deals with the detection of pests on plant leaves. In agriculture,
a pest can be any harmful insect. Known pests are aphids that attack the leaves and
live on plant sap, which is a fluid transported in the cells of a plant. After they occupy
a plant, they start to reproduce and their numbers quickly increase. They can cause
serious problems and also spread fungal diseases. Therefore, it is interesting to detect
the presence of these pests, since it might be linked to a certain disease and can prevent
the spreading of it.

Whiteflies are another type of insect that feeds on plant leaves. Besides damaging the
plant by feeding on them, like aphids, they also do transmit plant diseases. They are
also very small and sometimes difficult to detect. They are difficult to control, since they
can learn to be resistant against pesticides. Therefore, it is important to detect them in
their early stages, before they start to reproduce.

Similar to the previous model type:
1Computer vision deals with the extraction of information from images.
2The pixels of a grayscale image indicate the amount of light, usually in a range from 0 to 255. In

contrast to RGB, a grayscale image has only one channel.

28

4.2. Conventional model types

• images of leaves are used as an input, from a close range. On the leaves, pests
should be visible

• as an output, this model type should detect the presence of pests. Their presence
might be an indicator for an infection in the future

Ideally, images are automatically captured through some device, rather than doing it
manually. The quality of the images has to be relatively high, since these pests are of a
very small size and not always easy to see. In many situations, the human eye might not
be enough to deal with this problem. Using an algorithm to automatically detect these
pests can be an advantage.

Computer vision techniques are also used to detect pests. Most of them try to count the
number of aphids or whiteflies on a leaf.

4.2.3 Conventional model type based on thermal images
Some plant diseases cause a change of the temperature in a leaf. Concretely, the infected
areas may show a slightly higher temperature than the other healthy parts. This
phenomenon can be observed in some diseases. Detecting these temperature changes in
their early stages means also forecasting the occurrence of a possible disease. While a
human expert cannot do this process manually, there are other ways that help measuring
the temperatures. The most common one uses thermographic cameras (sometimes also
known as infrared cameras). They create a thermal image of the objects they capture,
by using infrared radiation. The created image shows the temperature distribution of
the captured object. Areas with a high temperature are usually depicted in white color,
a bit less warm temperatures are shown as red and yellow, and low temperatures are
indicated in black and blue color. Figure 4.3 shows an image of an apple leaf, infected
with the scab disease. Ideally, these cameras can be used to automatically monitor the
plants for temperature changes, in order to immediately report if there is a potential risk
for a disease.

Models that implement this model type have the following requirements:

• they should use thermal images as an input, from a close range

• they should return as an output, whether there are areas with high temperatures
in a leaf or not. A high temperature might indicate that a disease is in its initial
stages of development

This kind of model type allows predicting or detecting a disease in its earliest stages,
when it is still barely visible to the naked eye. Since a thermographic image shows a clear
distinction of the areas that are infected, due to the difference in color, it can be also
analyzed manually. Consequently, it is also easy to apply computer vision techniques
to identify these problematic areas in the leaf. The more complicated part is the actual

29

4. Conventional Models

Figure 4.3: Thermographic image of apple scab in a leaf. The red spots indicate infected
areas with a higher temperature[GVG+17].

acquisition of the data. External environmental factors, such as sunlight, may cause
problems regarding the temperature distribution in the areas of a leaf and the cameras
may deliver a wrong image.

4.2.4 Conventional model type using remote sensing
Monitoring plants for diseases is also possible from longer distances. Conventional model
types that use remote sensing should fulfill the following requirements:

• as an input, images of fields are used, from a long distance

• as an output, it should be identified whether a disease is present or not. This can
be done for a plant, a group of plants or an entire field, depending on the quality
of the image

Acquiring the images can be done in different ways. Typically, satellites are used to
capture images, on a regular basis. Also, unmanned aircraft vehicles, such as drones, can
be used. Planes equipped with cameras are also often used.

Analyzing these images does not only help to identify problematic fields regarding a
specific disease, but it can also help to check the severity of that disease, since the images
cover a lot of information. It also gives the possibility to identify spots of diseases, in
early stages.
Data that is captured using these devices has also other applications, such as monitoring
road infrastructure, and more. These re-usages of the data represent an important
advantage, especially from a cost perspective. A disadvantage is that the images are of a
relatively large size, requiring a lot of computation power.

Images are represented in different ways. Spectral images, i.e. images the human eye can
observe, are used. Hyperspectral imaging is used more often, especially for monitoring
plant diseases. It allows seeing things, not visible to the human eye, such as chemical
composition of the fields. The spatial resolution, which refers to the smallest object
size that can be detected on the ground, can be very small, providing very detailed
information. Another important aspect is the temporal resolution, which indicates how

30

4.2. Conventional model types

often images are acquired. When it comes to checking for a disease development, the
frequency of the acquisition of the images being high can be a benefit.

The data acquisition is the most complicated part. Although such data exists, it is not
always accessible. Sometimes, it is not possible to access the data, simply because it
is intended for specific purposes only or because of other reasons. Usually, commercial
satellites will offer the best images. Once the data is available, using it to detect diseases
should not be very complicated in most of the situations. It can also be analyzed
manually.

Not many implementations exist for this kind of model type. At the time of this writing,
no AI models are identified, which should motivate for more research in this area.

4.2.5 Conventional model type based on environmental data
Many plant diseases are influenced by wetness and low/high temperatures. Because of
this, many of them are predicted using weather forecasts. As a consequence, this has
led to the creation of plant disease forecasting systems. They do not only forecast a
disease, but they also help the growers to make economic decisions, in order to treat the
infected plants in the right way. The concept behind these systems is the plant disease
triangle[Isl18]. It defines that a disease will occur only if the following three factors
interact in some way:

• the susceptible host, which usually represents the plant that may have some
vulnerability regarding some disease

• the pathogen, which needs a vulnerable plant to attack and favorable environmental
conditions

• the environmental conditions

Although the pathogen may exist, if the environmental conditions are not favorable, the
plant may still not get infected. The same holds also for the other case, i.e. environmental
conditions favor the development of a disease, but the pathogen is missing.

Forecasting systems do already exist in practice. For instance, the New York State
Integrated Pest Management implemented a system3, that growers can use to make
predictions for their plants.

The part of these systems that is responsible for forecasting can be seen as a model.
Models that make predictions for a disease are the most common known and have existed
for a long time. The algorithms of these models have been obtained from research and
many trials over time. Models should:

3https://newa.cornell.edu

31

https://newa.cornell.edu

4. Conventional Models

• use as an input environmental data, mostly, this data contains series of weather
events. Typical data would be temperature, humidity, rainfall data, leaf wetness,
and more

• predict whether there might be a risk for a disease or not

For most of the plants, such conventional models do exist. Since the goal is to compare
these models with AI models, it is important to be able to run the models based on the
same data. Unfortunately, the majority of the models in the literature do not provide
the data they use for verification.

4.2.6 Other conventional model types
A few other model types are shortly described. Because of the lack of the necessary input
data that is needed to implement models for these model types, they are not used for
further comparison. However, they can serve as a reference, in order to extend this work
in the future, with more model types and models.

Model types that use morphological data over time. This model type analyzes
the plant morphology, in order to identify a disease. Plant morphology studies the
physical form of plants. Some diseases cause a change to the form, for example they
might cause an enlargement of parts of the plant. Data about the plant should be, ideally,
three-dimensional and acquired on a regular basis. This way, the data can be analyzed,
in order to understand the morphological development over time.

Model types that are based on fluorescence imaging. Similar to model types
that use thermographic images, also these models use images as their input data. The
images show the fluorescence across a leaf. Concretely, they can show how much light
the chlorophyll absorbs. This can be related to the presence of some diseases.

Model types that are based on hyperspectral imaging. Hyperspectral images
show the reflectance of images, from a wider spectral range than the human eye can see.
It creates spatial images, which can help with the disease identification. Even though
hyperspectral imaging was already mentioned as part of conventional models that were
based on remote sensing, also close-range images can be used for analysis.

Model types that use spectroscopy. Models that use spectroscopy analyze data
about the wavelength of electromagnetic radiation. Spectroscopy can measure the
spectrum of light that is reflected or absorbed by a plant. It can be used to analyze
this reflectance or absorption for different wavelengths (spectra). The reflectance and
absorption can be important indicators for a disease. For instance, it is known that
healthy plants absorb more infrared light than infected ones.

4.3 Conventional models
This section describes conventional models that are used later for comparison purposes.

32

4.3. Conventional models

4.3.1 Conventional models for diseases caused by cold weather
Tomato late blight image-processing model
Pamplona et al.[PCB20] developed an algorithm, which was able to detect black Sigatoka
and yellow Sigatoka diseases in banana leaves, and also Phytophthora infestans in tomato
leaves, which causes late blight. In order to segment infected areas on the plants, with
images from the PlantVillage data set[HS15] as an input, the Gaussian filter4 was applied.
After the background noise was removed, the leaf images were transformed from RGB to
YIQ color model. The I channel was used for thresholding5, in order to create a binary
image. The binary image was used as a mask to remove the healthy parts from the leaf.
The resulting image was transformed to HSV color model and the Gaussian filter was
applied to the H channel. Using thresholding, a mask was created and used to produce
the final image, with the healthy areas removed. In order to verify the results of the
algorithm, diseased areas from 100 images were manually selected and used as a reference
for comparison.

Wheat stripe rust weather model
Although many conventional models that are based on weather data do not publish the
data, Jarroudi et al.[JLK+20] published the data they used for testing their approach.
Weather data was used to predict wheat stripe rust infection on different fields in Morocco.
The data consisted of weekly rainfall, temperature and humidity values. In order to
verify and compare the results the model produced, the incidence and severity of the
disease were manually assessed over time.

4.3.2 Conventional models for diseases caused by moderate to hot
weather

Color features plant disease identification model
El Sghair et al.[ESJT17] researched into possible ways to detect infected areas in plants,
using color features. RGB and other color models were tested. The median filter6 was
applied for image smoothing. Out of the researched color models, the HSI color model
resulted as the most successful one. In order to produce a binary image, the H channel
was taken as an input for a thresholding method, called Kapur’s thresholding. Only a few
images were used for testing and no plant or disease was specified. Later, for comparison,
this model is tested for corn northern leaf blight detection.

Image-processing plant disease severity model
Camargo et al.[CS09] used image-processing to detect the severity of a disease. The area
of a leaf that was infected, was calculated in percentage. The Gaussian filter and some
other morphology operations, such as erosion7 and dilation8, were applied to the images.

4The Gaussian filter, also known as Gaussian blur, is used for blurring an image.
5Thresholding is used for segmentation, where pixels with a value greater or less than the threshold

value are ignored. The result is a binary image.
6The median filter removes noise from an image.
7Erosion removes pixels from the boundaries of an object.
8Dilation adds pixels to the boundaries of an object.

33

4. Conventional Models

The RGB images were converted to other color models such as HSV, and also to some
others, which worked well with varying lighting conditions. The best color model was
selected as a basis for segmentation. The segmented image was a binary image, where
white pixels represented the diseased area and black pixels the healthy parts. An optimal
threshold was identified, which could differentiate the background from the target object,
i.e. the diseased spots. The segmented images were compared with reference images.
The tests were run on 20 images, each containing different plants such as banana, cotton
and corn, with different diseases. One of them was northern leaf blight of corn.

Infrared image-processing plant disease identification model
Yang et al.[YYW+19] implemented an approach to detect diseases in tea leaves, using
thermographic images as an input. Segmentation was applied, and some color transfor-
mations were performed. The images were converted from RGB to HSV. Thresholding
was applied to the H component and the image was converted to a grayscale one. After
removing the noise (using median filtering), a binary image was created as a result. This
image was used to count the diseased areas. It was verified that the red spots matched
with the infected areas of the leaves. This was achieved by checking manually, using a
microscope. Also, the size of the affected area and the severity of the disease could be
calculated. The greater the size, the higher the severity of the disease.
As the authors also claimed, this technique should also work for other types of plant
diseases, such as Fusarium wilt of cucumber. The problem is broken down into detecting
areas with different colors in an image, under the assumption, that the images were
captured under ideal conditions, without any influence from the environment.

Rice sheath blight multispectral imaging model
Zhang et al.[ZZZ+18] researched into rice sheath blight identification methods, using
long-range images. The images, which contained rice cultivars, were acquired using a
quadcopter, which was equipped with both, digital and hyperspectral cameras. Using
the captured images, the severity of the disease was analyzed. Using the normal digital
images, color transformations were applied, in order to qualitatively detect the diseased
areas. However, this method didn’t perform well, regarding the assessment of the severity
of the disease. To quantify the severity, the vegetation indices from the hyperspectral
images were calculated. The vegetation indices indicate whether the crop fields contain
green vegetation or not. Results were compared with ground-truth data. The image data
was made public by the authors.

4.3.3 Conventional models for diseases caused by pests

Image-processing aphids detection model
Maharlooei et al.[MSB+17] developed an approach to count aphids on soybean leaves.
Segmentation was used, in order to extract the leaf from the background and create a
binary image. A similar step was repeated to remove the leaf, in order to extract the
aphids from it. Color transformations were applied as well. As a last step, the number of
aphids was counted. Each white dot in the binary image represented an aphid. However,

34

4.3. Conventional models

Figure 4.4: Rice field with sheath blight[ZZZ+18]. Infected tissue has yellow to brown
color.

no data with aphids was made available to implement an AI model. Therefore, this
conventional model is skipped from further comparison.

Image-processing whiteflies detection model
Computer vision can be used to identify whiteflies on leaves. Bodhe et al.[BM13] proposed
an approach for segmenting whiteflies. HSV, YIQ and other color model transformations
were applied. For each color channel, the entropy was calculated. The channel with the
highest entropy was used for thresholding.

Figure 4.5: Whiteflies occupying a leaf[BM13].

Image-processing whiteflies counting model
Barbedo et al.[Bar13] proposed a method to count whiteflies on soybean leaves. The
approach was tested with images in RGB color format. Different color transformations
and morphological operations were applied. Attempts were made to detect whiteflies in
different stages of their life cycle.

Image-processing pest detection model
Miranda et al.[MGI14] proposed a general way to detect insects, not necessarily on leaves.
RGB images were transformed into grayscale images as a first transformation step. Pixels
were compared with the background of the image. If these pixels had a different color
from the background, then they were considered as pixels of some part of the insect.

35

4. Conventional Models

Model Model type Authors Disease Cause Methods
Color features
plant disease
identification
model

Close-range im-
ages

El Sghair et
al.[ESJT17]

Corn north-
ern leaf
blight

Hot
weather

Segmentation,
color transforma-
tions, Kapur’s
thresholding

Tomato late
blight image-
processing
model

Close-range im-
ages

Pamplona et
al.[PCB20]

Tomato late
blight

Cold
weather

Color transforma-
tions, thresholding,
filtering

Image-
processing
plant disease
severity model

Close-range im-
ages

Camargo et
al.[CS09]

Corn north-
ern leaf
blight

Hot
weather

Filtering, morphol-
ogy operations,
color transforma-
tions, thresholding

Image-
processing
whiteflies detec-
tion model

Close-range
pest images

Bodhe et
al.[BM13]

Chrolosis Pest Color transforma-
tions, entropy based
thresholding

Image-
processing
whiteflies count-
ing model

Close-range
pest images

Barbedo et
al.[Bar13]

Chrolosis Pest Color transforma-
tions, thresholding

Image-
processing
pest detection
model

Close-range
pest images

Miranda et
al.[MGI14]

Chlorosis Pest Color transforma-
tions, thresholding

Infrared image-
processing plant
disease identifi-
cation model

Thermal
images

Yang et
al.[YYW+19]

Cucumber
fusarium
wilt

Hot
weather

Color transforma-
tions, thresholding

Rice sheath
blight multi-
spectral imaging
model

Remote sens-
ing

Zhang et
al.[ZZZ+18]

Rice sheath
blight

Hot
weather

Color transforma-
tions, vegetation
index calculations

Wheat stripe
rust weather
model

Environmental
data

Jarroudi et
al.[JLK+20]

Wheat
stripe rust

Cold
weather

Formula based
on temperature,
humidity and
precipitation

Table 4.1: Summary of the conventional models. The disease column indicates the disease
of interest during comparison with the AI models.

36

CHAPTER 5
AI Models

This chapter defines AI models for plant disease identification. Models are implemented
for each model type and disease category. The discussed algorithms in Chapter 2 serve
as a basis for the definition of these models. Since the data is labeled and the classes are
discrete, supervised learning classification algorithms are taken into consideration. The
process of defining an AI model always goes through the following stages:

1. Data acquisition. Often, the type of data that is used to train a model is the
first step. There might be many sources for the data. In this work, the data is
mainly coming from normal and thermographic cameras, from close and long ranges.
Weather data from weather stations is another kind of data source. The behavior
and success of a model will depend on the quality of the data it is trained with, i.e.
the definition of such a model is a data-driven process

2. Data pre-processing. Since it is often necessary to clean/pre-process the data,
visualization tools need to be used, in order to give a visual description of the data.
This can be helpful, when it comes to detecting anomalies, missing data or data
imbalance. There may be also other aspects, such as the size of the data, as the
performance of many algorithms depends on it, and many others, depending on
the problem that needs to be solved

3. Data augmentation. Sometimes, it might be necessary to generate more data.
Section 5.1 describes the techniques that are used to augment existing data

4. Training and evaluation data. In general, the data is split into training and
evaluation data. Chapter 6 explains this in a more detailed way. Usually, 80% of
the data is used for training and the rest for evaluation

37

5. AI Models

5. Choosing the model. Models1 are chosen depending on the problem and different
criteria. Depending on whether the data is labeled or not, supervised or unsupervised
machine learning models may be used. However, in general, a systematic way to
define a model for a problem does not exist. Choosing the right model is often a
combination of experience, some intuition and experimentation

6. Training. During the training phase, the model’s parameters are adjusted, in
order to fit the model to the data as close as possible. This process may take some
time, depending on the number of features and type of the model

7. Evaluation. After the model is built, it can be evaluated. Different metrics are
used for evaluation. See Chapter 6 for the evaluation strategy, and also for the
evaluation results

8. Parameter adjustments. It might be necessary to go back to step 5 and adjust
some parameters, in order to obtain better results. This is done until the model
performs as expected

The models are built by using the functions defined in Chapter 2. All the models can
be found in the supplementary materials. Experiments in this chapter are conducted
using the Python2 programming language. It is the most popular language that machine
learning developers use, and it comes with many popular libraries that offer the possibility
to quickly apply different algorithms. It offers cross-platform support and a good
performance, since it does not require a virtual machine to run, like some other languages
do. The runtime of the models is a key metric for evaluation. Table 5.2 gives a summary
of the defined AI models, including their (adjustable) parameters.

5.1 Data augmentation techniques
Data plays a crucial role in a machine learning model. Unfortunately, it is not always
available in large amounts or difficult to collect, making the machine learning models
perform not well and also prone to overfitting and underfitting. Because of this, the data
set has to be constructed in some way. There are a couple of ways to achieve this. In
machine learning, data augmentation refers to a data analysis technique, which increases
a small data set, by making some modifications to the original data.

5.1.1 Augmentation using image operations
In image classification problems, modifications may include changing the color, rotating,
flipping of the original images, and more. These operations are described next.

Rotation. This operation applies clockwise rotation to the image. The rotation angle is
a randomly chosen value between 0 and 360 degrees. The images are not resized, i.e. the

1The term model often refers to machine learning algorithms.
2https://www.python.org/

38

https://www.python.org/

5.1. Data augmentation techniques

original size is kept. This means that, depending on certain angles, such as 45 degrees,
the image might appear smaller and that there will be some space outside the boundaries
of the image. This space is filled using the background color of the original image, or at
least with a color close to it, in order to keep the consistency.

Horizontal flip. As the name suggests, this operation mirrors the image in the horizontal
direction.

Homography. Also known as projective transformation3, the goal of this operation is to
show how the viewed object changes when the angle of the observer changes. This should
mimic the capturing of images from different angles. Describing how this method works
is out of the scope of this work. However, it is important to know that the transformation
is based on the homogeneous transformation matrix, which in this case is a 3x3 matrix.
Depending on the values of the matrix, the transformations may be rotation, translation,
scaling, skewing or a combination of these. For the concrete case, the matrix looks as
follows: � 1 −0.5 30

random([0.1, 0.7]) random([0.4, 1]) 0
0.0015 0.0015 1

�
As a result, the generated images will also look warped and distorted.

Noise. This operation adds noise to the image. Speckle4 is used as the interference
technique, which reduces the quality of the image. The motivation behind this operation
is the fact that some cameras may produce low quality images.

5.1.2 Augmentation using GAN
Applying image operations works well only with image data sets. Due to the nature of
these transformations, the relation between the pixels is still preserved. Therefore, this
will not lead to a change in the classification label. In numerical data sets, however, a
label shift may happen, i.e. causing generating samples that belong to the wrong class.
Therefore, other approaches are needed.

AI is not only used for classification purposes, it can also be used to generate data. A
machine learning model, based on artificial neural networks, can learn from some data
samples and generate similar data. Goodfellow et al.[GPAM+14] designed a framework,
called Generative Adversarial Networks (GAN), which follows this principle. The reader
should refer to this paper, in order to understand the way GANs work. Nevertheless, the
intuition behind it is shortly described next.

GANs have many applications, one of which is face generation. They are mainly focused
on generating image data, but are not limited to it. An image is nothing but a n-
dimensional vector, or, if flattened, it can be expressed as a vector. Numerical data, such

3https://en.wikipedia.org/wiki/Homography
4https://en.wikipedia.org/wiki/Speckle_(interference)

39

https://en.wikipedia.org/wiki/Homography
https://en.wikipedia.org/wiki/Speckle_(interference)

5. AI Models

as weather data, can be represented similarly, making GAN suitable for generating such
data as well.

A GAN consists of two neural networks, which compete against each other, one is called
the generator and the other one the discriminator. The generator tries to generate fake
data, which is verified by the discriminator. The generator is initialized with random
data, which resembles the real data more and more, every time the discriminator is able
to classify this data as fake. This process continues until the discriminator is not able to
detect anymore that this data is fake.

In more technical terms, the goal of the generator is to increase the error rate of the
discriminator. The generator and the discriminator are trained simultaneously. The
discriminator is continuously trained with real data, while the generator is always fed
with fake data and tries to learn how to map this fake data to real data. This mapped
data is sent to the discriminator for verification. This process of training and verification
continues until the generator learns how to map randomly generated fake data to real
data. A GAN does not need labels to generate the data, i.e. it is unsupervised in this
regard.

5.2 Notations
In order to build the models, some functions are needed, i.e. some notation needs to be
defined:

• flatten(I) flattens an n-dimensional vector I. The result is a 1-dimensional vector

• given a vector N , the function first(N, n) returns the first n elements

• given a vector T and a vector Y , both with same dimensions and number of
elements, the function split(T, Y, fraction), where fraction needs to be between 0
and 1, randomly splits T and Y into four vectors and returns (Tt, Yt, Te, Ye), where

– Tt contains a 1 − fraction fraction of T , and Yt the respective elements from
Y

– Te contains the rest, i.e. the remaining fraction fraction of T . Ye are the
respective elements from Y

• for a neural network, the cross-entropy loss function is defined as
cel(h, X, Y) = − �n

i=1 yi · ln(eai(X)�n

j=1 eaj (X)), where:

– X is the vector of the training example
– Y is the label, expressed in one-hot encoding5, with n elements
– n is the number of neurons of the last layer of the network

5https://en.wikipedia.org/wiki/One-hot

40

https://en.wikipedia.org/wiki/One-hot

5.3. AI models for diseases that are caused by cold weather

– ai is the activation function of the neuron i from the last layer of the network,
i.e. the function that produces the output value

– h is the hypothesis function, which is a vector (a1, . . . , an)

• the binary cross-entropy loss function is defined as
bce(h, X, Y) = −

�n

i=1(yi·ln(h(Xi))+(1−yi)·ln(1−h(Xi)))
n , where:

– X is the vector of the training examples, with n elements
– Y is the vector of the respective labels, with n elements
– h is the hypothesis function

• backprop(loss) computes derivatives (or gradients) for each parameter(weight) of
the loss function

• sgd(h, gradients, lr) is the stochastic gradient descent algorithm, which minimizes
the loss function by adjusting the weights, with a given learning rate lr. It returns
a new hypothesis function h with the updated weights

• adam(h, gradients, lr) is the Adam algorithm[KB14], with a given learning rate lr.
It returns a new hypothesis function h with the updated weights

• relu is the rectifier activation function

• sig is the sigmoid activation function

• lrelu is the leaky rectifier activation function, given as

f(x) =
�

x if x > 0,

0.01x otherwise.

• the activation function identity(e) returns e

• zeros(n) returns a vector V with n elements, where each element is 0

• ones(n) returns a vector V with n elements, where each element is 1

5.3 AI models for diseases that are caused by cold
weather

5.3.1 Tomato late blight AI models
These models are able to detect tomato late blight disease. They are built with comparison
in mind: the tomato late blight image processing model analyzes tomato late blight
disease, which is why this disease is selected. The models can be built as follows:

41

5. AI Models

1. Data. Images, which are in RGB format and captured by normal cameras, come
from the tomato late blight data set, available in the supplementary materials. The
data consists of two classes:

• the class of images of healthy tomato leaves
• the class of images of tomato leaves that are infected with late blight disease

Each image is a 3-dimensional vector with the shape (3, 256, 256). Pixel values are
in the range [0, 255]. Some images are segmented, some healthy leaf images are
incorrectly labeled as diseased

2. Data pre-processing and augmentation. Each class contains at least 600
images, making an augmentation unnecessary. As there is enough data for each
class, the problem of unbalanced data does not occur. For the convolutional neural
network model (see below), the pixel values are normalized with a mean 0.5 and
standard deviation 0.5, for each of the three color channels

3. Constructing the tomato late blight logistic regression model. Since the
images are labeled, the application of a supervised machine learning algorithm,
such as logistic regression, is taken into consideration.
Logistic regression expects a (1-dimensional) feature vector, each image needs to
be flattened:

X = flatten(I)

For each image, the class is defined:

y = c(I))

where c(I) is a function that returns 0 if the image I shows a healthy tomato leaf,
and 1 otherwise. Consider T the vector of all images and Y the vector of their
corresponding classes.
80% of the data is used for building the model, the rest is used for evaluation:

(Tt, Yt, Te, Ye) = split(first(T, 600), first(Y, 600), 0.2)

Finally, the model is built:

h = lr(Tt, Yt, o)

where o can be respectively one of "lbfgs", "sag" or "saga". Chapter 2
describes the logistic regression function. The hypothesis function h(I) predicts
the probability that the flattened image I shows an infected leaf, with a threshold
of 0.5. In the evaluation phase, this probabilistic threshold can be changed

42

5.3. AI models for diseases that are caused by cold weather

4. Constructing the tomato late blight support-vector machine model. Support-
vector machines also expect a feature vector, each image needs to be flattened:

X = flatten(I)

Each image is classified the same way as for the logistic regression model:

y = c(I))

T is the vector of all flattened images and Y their labels. The model is trained
with 80% of the data:

(Tt, Yt, Te, Ye) = split(first(T, 600), first(Y, 600), 0.2)

The model is trained using the support-vector machine function, which is defined
in Chapter 2:

h = svm(Tt, Yt, k)

where k can be respectively one of the kernels "linear", "poly", or "rbf".
The hypothesis function h(I) determines the probability that a given flattened
image I shows an infected tomato leaf, with a threshold of 0.5

5. Constructing the tomato late blight convolutional neural network model.
The normalized images are classified:

y = c(I)

where c(I) is a function that returns (1, 0) if the image I shows a healthy tomato leaf,
and (0, 1) otherwise. Consider T the vector of all images and Y their corresponding
classes.
80% of the data is used for building the model, the rest is used for evaluation:

(Tt, Yt, Te, Ye) = split(first(T, 600), first(Y, 600), 0.2)

The architecture of the convolutional neural network is shown in Figure 5.1. The
first hidden layer applies the convolution operation to the RGB image, with a kernel
of size 10 and stride of size 4, creating 64 filters, which have to be learned. This
layer uses the rectifier as the activation function. The learned filters are used to
detect different features of the images. The filters are resized and made smaller
using a max pooling layer, with kernel size of 3 and stride of 2 pixels, and the
rectifier activation function is used once more. The output serves as an input for
the next fully-connected layer, consisting of 128 neurons. This layer also uses the

43

5. AI Models

Figure 5.1: Tomato late blight convolutional neural network model.

rectifier activation function and sends the data to the next fully-connected layer,
which has 64 neurons. These send their results to the final layer, which has 2
neurons, each firing for each of the classes.
In a more formal notation, the network is described as follows:
l1 = conv2d(I = I, in = 3, out = 64, kernel = (10, 10), stride = 4, a = relu)
l2 = maxpool2d(I = l1, kernel = (3, 3), stride = 2)
l3 = fc(I = flatten(l2), in = 57600, out = 128, a = relu)
l4 = fc(I = l3, in = 128, out = 64, a = relu)
l5 = fc(I = l4, in = 64, out = 2, a = identity)
The layer functions are described in Chapter 2. Let h(I) be the hypothesis function
that applies the steps above, and Y the labeled output for I. For every normalized
training image I and label Y , the cross-entropy loss function is used. As a mini-
mization algorithm, the stochastic gradient descent is used, with a learning rate
0.001. These training steps are formally described as follows:
lossFunc = cel(h, I, Y)
gradients = backprop(lossFunc)
h = sgd(h, gradients, 0.001)
The training process is repeated 5 times6. The function h(I) returns a vector
(ph, pd), where ph is the probability that the normalized image I is healthy, and pd

the probability that it is infected with tomato late blight

5.3.2 Wheat stripe rust logistic regression model
Most of the traditional plant disease models rely on environmental data. The wheat stripe
rust weather model used weather data to predict infections in Morocco. The assessments
about the incidence of this disease in different sites across Morocco and on different days
in 2018 and 2019 were made available by the authors. However, the weather data, which
was computed using a regional atmosphere model and then used to make the predictions,
was only published graphically. This data included weekly frequencies of different levels
of rainfall, temperature and relative humidity. Regarding the assessments, same as for
other models, the wheat crops are assumed to be equally susceptible to wheat stripe
rust. Also, it is assumed that there exists some presence of a pathogen, which favors

6The epoch indicates how many times the training process is repeated.

44

5.3. AI models for diseases that are caused by cold weather

the development of the disease. This allows focusing only on the environment part of
the plant disease triangle. The same assumptions were also made by the authors of the
conventional model.

A wheat stripe rust identification logistic regression model is defined as follows:

1. Data. For the data set, the necessary weather data needs to be collected, for each
site. The frequencies of specific temperatures, relative humidity and rainfall are
manually extracted from the plots that were published by the authors. Some sites
are very close to each other, which is why the weather data for them is nearly the
same or identical.

One sample is created for the same site, date and species. Since there can be more
than one assessment, the average incidence of wheat stripe rust is taken. Weather
data from the week of the assessment is used for each sample.

Feature Description
Site The site where the assessment is made
Date The date when the assessment is made
Species The wheat species, can be bread or durum
R1 Weekly frequency of no rain
R2 Weekly frequency of rain >0mm and <=1mm
R3 Weekly frequency of rain >1mm and <=5mm
R4 Weekly frequency of rain >5mm
H1 Weekly frequency of humidity <=60%
H2 Weekly frequency of humidity >60% and <=75%
H3 Weekly frequency of humidity >75% and <=85%
H4 Weekly frequency of humidity >85% and <=90%
H5 Weekly frequency of humidity >90%
T1 Weekly frequency of temperature <0
T2 Weekly frequency of temperature >0 and <=4
T3 Weekly frequency of temperature >4 and <=8
T4 Weekly frequency of temperature >8 and <=12
T5 Weekly frequency of temperature >12 and <=16
T6 Weekly frequency of temperature >16 and <=20
T7 Weekly frequency of temperature >20
Average incidence (I) The average incidence for a specific site, date and species

Table 5.1: Description of the features of the constructed data set.

The constructed wheat weather data set can be found in the supplementary materials
and the features are described in Table 5.1. The ranges of the frequencies have
been proposed by the authors

45

5. AI Models

2. Data pre-processing and augmentation. Since machine learning algorithms
require numerical data to work with, the non-numerical features are mapped as
follows:

• the 9 sites are mapped to numerical values from 0 to 8, in alphabetical order
• bread wheat species is mapped to 0 and durum wheat species is mapped to 1

In the assessments, the average incidence represents the percentage of infected
plants on a field. For each assessment, these values are made more discrete and
mapped to the following classes:

• an incidence less than 20 is mapped to risk level 0 (low)
• otherwise, the incidence is mapped to risk level 1 (high)

As it can be seen in the constructed data set, the durum species has, in general, a
lower incidence than the bread species. Bread wheat infections are favored with
a humidity greater than 90% for up to 15% of the time and low rainfall, during
the week. Temperatures should be between 8 and 16 for 10% to 25% of the time.
In Bouderbala, the high humidity should be present for a greater amount of time.
Because of this, the disease depends not only on the species, but also on the specific
site.
The constructed data set includes, however, only 46 samples, which is not enough
to build a proper model, as it would be prone to overfitting. In order to overcome
this problem, data needs to be enhanced. Applying image transformations is not
possible, which is why a GAN is defined to generate data.
Some data pre-processing is required, in order to facilitate the work of the neural
networks. Therefore, each feature is normalized. That is, each feature X is
transformed by using the following formula:

Z = X−min(X)
max(X)−min(X)

The values will always be in the interval [0, 1]. Sometimes, min(X) and max(X)
may match. This can happen, when all the classified samples have the same
assessment date. In this case, in order to prevent a division by zero, Z is set to 0.5.
The assessment date is ignored from the features, as it has no relevance.
The GAN learns from each site to generate data. It does this separately for each
class, i.e. the GAN is run, in order to learn to generate new data for each site and
class.
The generator is defined as follows, where the number of features for X is 18:

g(N) = fc(I = N, in = 18, out = 18, a = sig)

The neural network of the discriminator d(X) has the following configuration:

46

5.3. AI models for diseases that are caused by cold weather

l1 = fc(I = X, in = 18, out = 128, a = lrelu)
l2 = fc(I = l1, in = 128, out = 1, a = sig)

Data from the same site and class is grouped together into batches and used to
run the GAN, i.e. the batch has a shape (k, 18), where k is the number of training
examples for the batch. With every batch Breal the process is as follows:
A batch Bnoise, with the same shape as Breal is generated, where each feature vector
contains features with random values between 0 and 8.
For each feature vector N from Bnoise, the generator generates fake data Gfake:

Gfake = g(N)

h(Gfake) returns the probability that the provided fake data is real. Let Dfake be
the batched result from the discriminator, i.e. a vector with k elements.
Next, the generator is trained:
gloss = bce(g, Dfake, ones(k))
gradients = backprop(gloss)
g = adam(g, gradients, 0.001)
The loss of the generator uses a vector of ones as the predictions. The loss is high,
if the discriminator detects that the data is fake.
Next, the discriminator is trained. For each feature vector X from Breal, the
discriminator is called with X. Let Dreal be the batched result. The loss function is
calculated as a combination between the discriminator’s loss on real and fake data:
drealLoss = bce(d, Dreal, ones(k))
dfakeLoss = bce(d, Dfake, zeros(k))
dloss(f, X, Y) = (drealLoss(f, X, Y) + dfakeLoss(f, X, Y)) · 0.5
Finally, the gradients are calculated, and the weights are updated using the Adam
optimizer:
gradients = backprop(dloss)
d = adam(d, gradients, 0.001)
This process is repeated 150 times for Breal. The built generator generates 10
samples using g(N), where N is a feature vector that contains features with values
between 0 and 8.
Overall, 160 samples are generated. Since the features were initially normalized,
each feature X is transformed back.
A big advantage of a GAN is that once the generator has been created, it is then
able to generate data in a very fast way. One major shortcoming is that there are
no metrics to evaluate how good a GAN works. For instance, in case of generating
faces, it is easy to manually verify the generated faces. Interpreting generated
numerical data, however, is much more difficult. Another common problem with a

47

5. AI Models

GAN is the lack of stability. Sometimes, the generator will get stuck, i.e. it will
produce the same data all the time, after a certain number of epochs. This requires
some manual verification, in order to know when to stop the generator. Running
the GAN again might produce better results. The GAN might oversample some
samples. This is the case for situations, where only one assessment is available for
the same site, date and species

3. Constructing the model. Let c(X) be the function that classifies each training
example from the augmented data set. It returns 0 if the weather data is not
expected to be favorable for stripe rust, and 1 otherwise. Let T be the vector of all
training examples and Y the vector of the classes. 80% of the augmented data is
used for training the model:

(Tt, Yt, Te, Ye) = split(T, Y, 0.2)

The model is trained using:

h = lr(Tt, Yt, o)

where o is one of the optimization algorithms from Chapter 2.
Given some data sample X with weather observations, which has the same structure
as previously described, the hypothesis function h(X) predicts if the weather data
in X is favorable for development of stripe rust, with a threshold of 0.5.
The quality of this model is very dependent on the generated data set, i.e. it is a
more theoretical model than the others

5.4 AI models for diseases that are caused by hot weather
5.4.1 Corn northern leaf blight AI models
These models are able to identify corn northern leaf blight disease. They are built with
comparison in mind: the color features plant disease identification model does not specify
any disease concretely, therefore, it is selected for comparison with this model. The
image-processing plant disease severity model deals with identification of corn blight
diseases. They have similar visual symptoms to northern leaf blight. The models are
trained as follows:

1. Data. The models use RGB images from the corn northern leaf data set, available
in the supplementary materials. It consists of two classes:

• the class of images of healthy corn leaves
• the class of images of corn leaves that are infected with northern leaf blight

disease

48

5.4. AI models for diseases that are caused by hot weather

Each image is a 3-dimensional vector with the shape (3, 256, 256), with pixel values
in the range [0, 255]. Some images are segmented, some healthy leave images are
incorrectly labeled as diseased

2. Data pre-processing and augmentation. Each class contains at least 600
images, which is enough data for training and testing. For the convolutional neural
network model, the pixels are normalized with a mean 0.5 and standard deviation
0.5, for each of the three color channels

3. Constructing the corn northern leaf blight logistic regression model.
Logistic regression requires every image to be flattened:

X = flatten(I)

Each image is classified:

y = c(I))

where c(I) is a function that returns 0 if the image I shows a healthy corn leaf,
and 1 otherwise. Consider T the vector of all images and Y the vector of their
corresponding classes. 80% of the data is used for building the model:

(Tt, Yt, Te, Ye) = split(first(T, 600), first(Y, 600), 0.2)

The model is trained using the logistic regression function from Chapter 2:

h = lr(Tt, Yt, o)

where o can be one of the three optimization algorithms. The hypothesis function
h(I) determines the probability that a flattened image I shows an infected corn
leaf, with a threshold of 0.5. This threshold is configurable for evaluation purposes

4. Constructing the corn northern leaf blight support-vector machine model.
Support-vector machines also expect a feature vector, each image is flattened and
classified the same way as for the logistic regression model:

X = flatten(I)
y = c(I))

Let T be the vector of the flattened images and Y the classes. The model is trained
with 80% of the data, the rest is used for evaluation:

(Tt, Yt, Te, Ye) = split(first(T, 600), first(Y, 600), 0.2)

The model is trained using:

49

5. AI Models

h = svm(Tt, Yt, k)

where k can be respectively one of the kernels from Chapter 2.
The hypothesis function h(I) determines the probability that a given flattened
image I shows an infected corn leaf, with a threshold of 0.5

5. Constructing the corn northern leaf blight convolutional neural network
model. The normalized images are classified:

y = c(I)

where c(I) is a function that returns (1, 0) if the image I shows a healthy corn leaf,
and (0, 1) otherwise. Consider T the vector of all images and Y their corresponding
classes. 80% of the data is used for building the model:

(Tt, Yt, Te, Ye) = split(first(T, 600), first(Y, 600), 0.2)

The architecture of the convolutional neural network is shown in Figure 5.2.

Figure 5.2: Corn northern leaf blight convolutional neural network model.

The network is described as follows:
l1 = conv2d(I = I, in = 3, out = 64, kernel = (10, 10), stride = 4, a = relu)
l2 = maxpool2d(I = l1, kernel = (3, 3), stride = 2)
l3 = fc(I = flatten(l2), in = 57600, out = 128, a = relu)
l4 = fc(I = l3, in = 128, out = 64, a = relu)
l5 = fc(I = l4, in = 64, out = 2, a = identity)
The hypothesis function h(I) applies the steps above, and Y is the expected class for
I. The training process is carried out using cross-entropy loss, minimized through
stochastic gradient descent:
lossFunc = cel(h, I, Y)
gradients = backprop(lossFunc)
h = sgd(h, gradients, 0.001)
The training is repeated 5 times. h(I) returns a vector (ph, pd), where ph is the
probability that the normalized image I shows a healthy corn leaf, and pd is the
probability that is infected

50

5.4. AI models for diseases that are caused by hot weather

5.4.2 Cucumber Fusarium wilt AI models
The models use images that show the distribution of temperatures of the captured object.
Unfortunately, at the time of this writing, no large data sets showing thermal images of
healthy and diseased leaves do exist. Also, collecting images manually, is not possible.

However, Wang at al.[WLD+12] created thermographic visualizations of cucumber leaves,
infected with the soil-borne pathogen Fusarium oxysporum f. sp cucumerinum. This
fungal pathogen is responsible for Fusarium vascular wilt on cucumber leaves. Infected
leaves tend to have more water loss than healthy ones, which causes the temperature
of the leaves to be higher than usual. Therefore, it is possible to analyze the leaves by
taking the thermal images of them.

The authors captured thermal images of inoculated and non-inoculated leaves on 6 days
(days 4, 5, 7, 9, 10 and 11 after the inoculation). As their images show, the temperature
of an infected leaf is already high in the initial stages of the disease, even though the
leaf still looks healthy to the naked eye. This could be important, when it comes to
dealing with diseases and should, at the same time, motivate to do more research in this
direction.

The AI models detect cucumber Fusarium wilt disease. The infrared image-processing
plant disease identification model can detect any disease using infrared images and is
used for comparison. The AI models are trained as follows:

1. Data. Since the authors didn’t publish the visualization in the format of a data
set, six healthy and six diseased RGB images, with the shape (1, 124, 124) and pixel
values in the range [0, 255], are extracted manually, by using a tool. These images
can be found in the supplementary materials

2. Data pre-processing and augmentation. Since there are only six images per
class, data augmentation techniques have to be used. Image data augmentation
techniques are applied in the following order:

• homography is applied with a probability of 60%

• clockwise rotation is applied with a random angle between 0 and 360 degrees
and with a probability of 90%

• images are horizontally flipped with a probability of 20%

This process is repeated for each image 100 times, i.e. there are overall 106 samples
per class. When performing rotation or homography, the background outside the
boundaries of the images has to be filled. For this, the background color of the
original image is used, and erosion is used to eliminate possible noise. For the
convolutional neural network model (see below), the pixels are normalized with a
mean 0.5 and standard deviation 0.5, for each of the three color channels

51

5. AI Models

3. Constructing the cucumber Fusarium wilt logistic regression model.
Based on the augmented data set, a logistic regression model can be trained.
Since it expects a feature vector, each image needs to be flattened. Also, for each
image, the class is defined:

X = flatten(I)
y = c(I))

where c(I) is a function that returns 0 if the image I shows a healthy leaf, and 1 oth-
erwise. Consider T the vector of all images and Y the vector of their corresponding
classes. 80% of the data is used for training the model:

(Tt, Yt, Te, Ye) = split(T, Y, 0.2)

Finally, the model is built, by using one of the three cost functions o from Chapter
2:

h = lr(Tt, Yt, o)

The function h(I) determines the probability that a given flattened image I shows
an infected leaf, i.e. there are areas with high temperatures. As a probabilistic
threshold, 0.5 is used, which can be changed in the evaluation phase

4. Constructing the cucumber Fusarium wilt convolutional neural network
model. The images are labeled as follows:

y = c(I))

where c(I) is a function that returns (1, 0) if the image I shows a healthy leaf,
and (0, 1) otherwise. Consider T the vector of all images and Y the vector of
their classes. 80% of the data is used for building the model, the rest is used for
evaluation:

(Tt, Yt, Te, Ye) = split(T, Y, 0.2)

The architecture of the convolutional neural network is shown in Figure 5.3. Fewer
filters are needed, in order to achieve satisfying results. Fewer features have to
be learned, that is, the color is the most important one, which distinguishes the
classes from each other. The morphology of the images plays a less important role
in this model.
The network is configured as follows:
l1 = conv2d(I = I, in = 3, out = 32, kernel = (4, 4), stride = 2, a = relu)
l2 = maxpool2d(I = l1, kernel = (3, 3), stride = 2)

52

5.4. AI models for diseases that are caused by hot weather

Figure 5.3: Cucumber Fusarium wilt convolutional neural network model.

l3 = fc(I = flatten(l2), in = 28800, out = 128, a = relu)
l4 = fc(I = l3, in = 128, out = 64, a = relu)
l5 = fc(I = l4, in = 64, out = 2, a = identity)
h(I) is the hypothesis function that applies these steps, and Y the labeled output
for I. For every normalized training image I and label Y , the cross-entropy loss
function is minimized using stochastic gradient descent:
lossFunc = cel(h, I, Y)
gradients = backprop(lossFunc)
h = sgd(h, gradients, 0.001)
The training process is repeated 5 times. The function h(I) returns a vector (ph, pd),
where ph is the probability that the normalized image I is healthy, and pd the
probability that it is diseased.
It is expected that the convolutional neural network will perform the best. The
main challenge for this model type is the actual capturing of the images, for which
special cameras are required

5.4.3 Rice sheath blight convolutional neural network model
Identifying plant diseases using remote sensing represents a challenging task. This is
because of the longer distance to objects, which affects the quality of images. However,
cameras have improved a lot in recent years and can acquire high-resolution images, even
from longer distances. It should be possible that the images show even the morphological
details of the plants. While this may still be difficult to achieve using satellites, drones
can acquire images from a much closer range.

Zhang et al.[ZZZ+18] monitored a rice field for the sheath blight disease. By using
a drone, which was equipped with multispectral and digital cameras, they captured
images of 67 rice cultivars. This was done on 2 different days (producing 2 images of
the fields): after the acquisition was finished for the first day, one end section of the
field was inoculated with a sheath blight pathogen. After this change took effect, the
cultivars started to change the color from green to yellow and brown, and the cultivars
were captured again. This color change was used to identify the sheath blight severity in
the cultivars, the change of the color model from RGB to HSL generated better results,
regarding identification. For each cultivar, the severity of sheath blight was assessed with
values from 0 to 9. It could also be observed how the disease started to spread across

53

5. AI Models

the plants. Diseased cultivars were usually next or close to each other. Therefore, it is
important to detect the disease as early as possible, in order to prevent the spreading.

Using this data, the AI model is described as follows:

1. Data. For the data set, the two images of the rice fields are used. The first image
has a higher quality than the second one. However, for both it is difficult to see
the morphology of the cultivars, even though the images are acquired from a close
range (altitude of 27 meters). In order to use the data, some pre-processing is
required. As a first step, with a tool, for each image, each cultivar is manually
extracted (resized to 256x256 pixels, with a black background, i.e. segmented with
a clean background), resulting in 134 images. In the future, this extraction process
can be automated, by giving a drone fixed coordinates, for each cultivar.
The previous models solve binary classification problems. In this model, each image
is classified into the following three classes:

• low risk of sheath blight, with a severity in the interval [0, 4), containing 26
samples

• medium risk of sheath blight, with a severity in the interval [4, 7), containing
48 samples

• high risk of sheath blight, with a severity in the interval [7, 9], containing 60
samples

Each image is a vector with the shape (1, 256, 256). Because there are not enough
assessments that can be used for training, using one class per severity is not possible.
The constructed data set is available in the supplementary materials

2. Data pre-processing and augmentation. Since the size of the data set is small,
data augmentation is needed. Augmentation techniques are applied in the following
order:

• clockwise rotation is applied with a random angle between 0 and 360 degrees
with a probability of 90%

• images are horizontally flipped with a probability of 20%
• noise is added to the images with a probability of 30%

It can be seen that the classes from the original data set are imbalanced. Therefore,
the augmentation is performed for as long as 600 samples are reached per class.
Satellites and drones will acquire images from above with a precise fixed configured
angle, that is, the images will always look flat. Because of this, they will not be
skewed or have different angles, which is why the homography operation is skipped,
since it would have generated unreal images. It is also worth noting that images
from different classes are very similar to each other. As a pre-processing step, the
images are transformed into the HSL color space, since it is reported by the authors

54

5.4. AI models for diseases that are caused by hot weather

that this transformation increases the accuracy of the disease severity detection.
Pixels are normalized the same way as for the other convolutional neural networks,
by using mean and standard deviation of 0.5

3. Constructing the rice sheath blight convolutional neural network model.
Since the data is labeled, supervised learning algorithms are used. The images are
flattened and classified:

y = c(I)

where c(I) is a function that returns (1, 0, 0), (0, 1, 0) or (0, 0, 1), depending on
the risk level of the disease. Consider T the vector of all images and Y their
corresponding classes. 80% of the data is used for building the model, the rest is
used for evaluation:

(Tt, Yt, Te, Ye) = split(T, Y, 0.2)

Figure 5.4 shows the convolutional neural network. Given some image of a rice
cultivar, this model assigns the image to one of the three classes. Compared to the
previous convolutional neural networks, this one has some additional convolution
and max pooling layers. It is very difficult to distinguish healthy from diseased
cultivars, because of the similarities in colors, which is why more features need to
be learned. This is expressed with the higher number of layers.

Figure 5.4: The rice sheath blight convolutional neural network model.

The model is described with the following steps:
l1 = conv2d(I = I, in = 3, out = 64, kernel = (8, 8), stride = 4, a = relu)
l2 = maxpool2d(I = l1, kernel = (3, 3), stride = 2)
l3 = conv2d(I = l2, in = 64, out = 96, kernel = (4, 4), stride = 1, a = relu)
l4 = maxpool2d(I = l3, kernel = (3, 3), stride = 2)
l5 = fc(I = flatten(l4), in = 16224, out = 128, a = relu)
l6 = fc(I = l5, in = 128, out = 64, a = relu)
l7 = fc(I = l6, in = 64, out = 2, a = identity)
This network is trained using stochastic gradient descent, which minimizes a cross-
entropy loss function:
lossFunc = cel(h, I, Y)
gradients = backprop(lossFunc)
h = sgd(h, gradients, 0.001)

55

5. AI Models

The training is repeated 50 times. Due to the high similarity between the images
from different classes, it is not expected that this model will be as good as the
others. The function h(I) returns a vector (pl, pm, ph) for a pre-processed cultivar
image I, where

• pl is the probability that the rice cultivar has a low risk of sheath blight
• pm is the probability that the rice cultivar has a medium risk of sheath blight
• ph is the probability that the rice cultivar has a high risk of sheath blight

5.5 AI models for diseases that are caused by pests
This model uses images from a close range to detect the presence of whiteflies. Images
are captured before a disease has occurred, i.e. diseases are not visible to the naked
eye. Images always show healthy leaves, and some of them may contain whiteflies. The
presence of whiteflies might be an indicator for a disease, which might develop in the
future. This model tries to detect the presence of these insects, as they represent a
potential threat to the plants. One typical disease that is caused by whiteflies is chlorosis,
which is a yellowing of the leaves, because of the lack of chlorophyll.

A model that detects whiteflies i.e. predicts chlorosis disease is described as follows:

1. Data. At the time of this writing, no data sets containing images of whiteflies are
found. Data with images of whiteflies on leaves is collected manually from different
sources, because of its availability on the internet. Some images may also show
whitefly eggs on leaves, for example, during a whitefly infestation. The images have
different dimensions. As a first step, images with whiteflies on leaves are manually
pre-processed. That is, noise and other irrelevant background data are removed, by
using a modeling application. Then, they are resized to 256x256 pixels (the aspect
ratio is ignored in this case, as it does not have much negative impact on the images,
in terms of distortions), and a black background is added. This step is necessary,
since the data must have the same structure, in order to be comparable. Images
without whiteflies, showing just healthy leaves, also have the same dimensions and
are randomly chosen from the PlantVillage data set[HS15] (segmented images are
used, in order to have the same black background). There are 178 samples for each
class, i.e. there are two classes:

• the class of images of healthy leaves (from any plant)
• the class of images of leaves that are occupied by at least one whitefly

Each RGB image is a vector with the shape (1, 256, 256). The constructed data set
can be found in the supplementary materials. There are some challenges regarding
this manually created data set. Images are not very similar to each other: all
the images contain leaves, however, of different types. Regarding the images that

56

5.5. AI models for diseases that are caused by pests

contain whiteflies, since they are coming from different sources, they have different
dimensions. Whiteflies appear in some images bigger and in some others smaller.
Also, the colors of the whiteflies appear in different shades of white, and some
images are more saturated than others

2. Data pre-processing and augmentation. In order to obtain more realistic
results (preventing overfitting), more images are needed. Augmentation techniques
are applied in the following order:

• clockwise rotation is always applied, with a random angle between 0 and 360
degrees

• images are horizontally flipped, with a probability of 20%
• noise is added to the images, with a probability of 30%

This process is repeated for each image three times, i.e. there are overall 712
samples per class. Additionally, a pre-processing step is applied, that is, images
are converted from RGB to HSV color space. The hue component makes sure
that lighting variations are eliminated. This is an important improvement, since
parts with a high intensity of light can be confused with whiteflies. Also, pixels are
normalized for each color channel, with mean 0.5 and standard deviation 0.5

3. Constructing the chlorosis convolutional neural network model. Since
the data is labeled, supervised learning algorithms are applied. The model should
predict if there is a potential risk for a disease, due to the presence of the whiteflies.
A convolutional neural network is selected for implementing this model. Other
algorithms, such as logistic regression (being a linear model) and support-vector
machines (being a very complex model from a computational point of view) are
not expected to perform better, which is why they are skipped.
The images are classified:

y = c(I)

where c(I) is a function that returns (1, 0) if the image I shows a healthy leaf, and
(0, 1) otherwise. Consider T the vector of all images and Y their corresponding
classes. 80% of the data is used for building the model, the rest is used for
evaluation:

(Tt, Yt, Te, Ye) = split(T, Y, 0.2)

The convolutional neural network is depicted in Figure 5.5. It is very similar to
the other networks, but with a reduced kernel size in the convolution layer. The
features that need to be learned, in this case the whiteflies, are small.
This is described with the following steps:

57

5. AI Models

Figure 5.5: The chlorosis convolutional neural network model.

l1 = conv2d(I = I, in = 3, out = 64, kernel = (4, 4), stride = 4, a = relu)
l2 = maxpool2d(I = l1, kernel = (3, 3), stride = 2)
l3 = fc(I = flatten(l2), in = 61504, out = 128, a = relu)
l4 = fc(I = l3, in = 128, out = 64, a = relu)
l5 = fc(I = l4, in = 64, out = 2, a = identity)
The hypothesis function h(I) applies these steps, and Y is the expected class for I.
The training is done using cross-entropy loss and stochastic gradient descent:
lossFunc = cel(h, I, Y)
gradients = backprop(lossFunc)
h = sgd(h, gradients, 0.001)
The training is repeated 8 times. h(I) returns a vector (ph, pd), where ph is the
probability that the (pre-processed) image I shows a healthy leaf, and pd is the
probability that the leaf contains at least one whitefly

58

5.5. AI models for diseases that are caused by pests

Model AI model type Cause Parameters
Tomato late blight logis-
tic regression model

Close-range
images

Cold weather Optimizer and
probabilistic
threshold

Tomato late blight
support-vector machine
model

Close-range
images

Cold weather Kernel

Tomato late blight con-
volutional neural net-
work model

Close-range
images

Cold weather N/A

Corn northern leaf
blight logistic regression
model

Close-range
images

Hot weather Optimizer and
probabilistic
threshold

Corn northern leaf
blight support-vector
machine model

Close-range
images

Hot weather Kernel

Corn northern leaf
blight convolutional
neural network model

Close-range
images

Hot weather N/A

Chlorosis convolutional
neural network model

Close-range pest
images

Pest N/A

Cucumber Fusarium
wilt logistic regression
model

Thermal images Hot weather Optimizer and
probabilistic
threshold

Cucumber Fusarium
wilt convolutional
neural network model

Thermal images Hot weather N/A

Rice sheath blight convo-
lutional neural network
model

Remote sensing Hot weather N/A

Wheat stripe rust logis-
tic regression model

Environmental
data

Cold weather Optimizer

Table 5.2: Summary of AI models.

59

CHAPTER 6
Evaluation

In order to prove the usefulness of the presented models, they are evaluated using a
prototype. The prototype can be trained to evaluate a specific model. This should not
only answer whether a model is performing well or not, but also if it can be used in
practice. It is also important to analyze whether the model is underfitting or overfitting,
which are two common problems in machine learning. The evaluation is performed
according to some metrics, which are defined in Section 6.1. Such metrics include the
accuracy from the confusion matrix, precision, recall, and more. The evaluation strategy
is described as well. Section 6.2 describes the prototype, which is not only able to evaluate
a model, but also offers a graphical user interface and the possibility to be integrated
with other tools, through an API. In Section 6.3, the results of the evaluation for each
model are presented.

6.1 Metrics
Evaluating a model using the right metrics is a crucial part. Analyzing only one metric
is often not enough. When performing classification, there are four different outcomes
that a model produces for each class C:

• the true positives (TP) are the outcomes that were correctly predicted for C

• the true negatives (TN) are the outcomes that were correctly predicted for all other
classes, i.e. all classes except C

• the false positives (FP) are the outcomes that were incorrectly predicted as class
C. Another class would have been correct

• the false negatives (FN) are the outcomes that were incorrectly predicted as another
class, i.e. any class except C. Class C would have been correct

61

6. Evaluation

These outcomes are part of many evaluation metrics. They are summarized as a confu-
sion matrix[Ste97]. In this matrix, each column represents the number of samples for a
predicted class and each row the number of samples for a real class.
Next, some other metrics are described.
Time. This includes the time that is needed to build a model. It represents the required
time to learn from the data, in order to update the parameters and create a model, which
is then able to predict the class for a sample. It includes the time needed for evaluation
as well, which is usually shorter than the build time.
Model size. Depending on the parameters that models need to learn, they may have
different sizes. Size is an important metric, since the models will need to be loaded later,
in order to use them for classification purposes.
Accuracy. This metric is calculated by using the confusion matrix M and is given as:
Mdiagsum

Msum
, where Mdiagsum represents the sum across the diagonal of M and Msum the

sum of all values of M . It indicates the percentage of correctly predicted samples. This
metric is not very good in case of class imbalance.
Precision. Indicates the correctly predicted samples for a class, normalized by the
samples predicted as correct and is given as: T P

T P +F P . The overall precision is calculated
as the average mean across all class precisions.
Recall. Indicates the correctly predicted samples for a class, normalized by the actual
correct samples, and is given as: T P

T P +F N . The overall recall is calculated as the average
mean across all class recalls.
F-score. Looking at precision and recall in an isolated way might still not be very useful.
If every sample is predicted as positive, recall will be 1 and precision very small. Similarly,
if a model predicts only real positive samples as positive, precision is high, but recall
can still be small. In order to overcome this trade-off, using the F-score (sometimes also
known as F1) is a better metric, as it summarizes both of these metrics. It is calculated
as 2·precision·recall

precision+recall . A high F-score means precision and recall are also high.
ROC curve. The receiver operating characteristic curve[Swe86] is a commonly used
graphical metric. Machine learning classification models map probabilities to classes. In
binary classification, a threshold, typically 0.5, is used to predict one class or another.
Finding the right threshold depends on the machine learning problem. The y-axis is the
recall and x-axis are the false positive rates (FPR), given as F P

F P +T N . The goal is to find
the threshold for which the recall is maximized and the false positive rate is minimized.
This can be generalized for multiclass classification problems as well. This metric is used
for all classification algorithms except for neural networks, such a metric does not exist
for them.
Precision-recall curve. Similar to the ROC curve, the precision-recall curve is another
way to visually determine the classification threshold. The y-axis represents the precision
and the x-axis the recall, which both have to be maximized. This metric is used for all
classification algorithms except for neural networks.

62

6.2. Prototype

Feature map. This is a qualitative metric. In case of convolutional neural networks, the
learned filters can be used to visually and manually analyze how the model is performing.
Feature maps are created by applying these filters to images. Feature maps for the filters
of the first convolution layers are created, since they are manually interpretable. In the
next convolution layers, even though the filters are very useful for the algorithm, they
cannot be visually interpreted anymore, which is why they are not used for this kind of
qualitative evaluation.

Other metrics. Other metrics might be used. For instance, manually analyzing the
parameters that a model has learned, as they give information about the importance of
certain features.

Evaluation strategy. The models have to be trained and also tested. Therefore, the
data set is split into the training data and test data. Usually, the test data represents
20% of the data set. This should avoid overfitting, but there is still a risk that the
parameters of the model are manually changed (in order to achieve better results) and this
model would depend on the training data. To overcome this problem, cross-validation is
performed. In k-fold cross-validation, the model is trained using the k − 1 folds, and the
fold that is left is used for validation (and evaluated using the metrics that are discussed
before). This process is repeated k times, where a typical number for k is five. Only as a
final step, the model is tested with the remaining test data.

6.2 Prototype
The AI models from Chapter 5 are implemented and evaluated using a prototype. The
Plant Disease Identification System (PDIS) is a system that assists people who work in
agriculture. It can examine plants, regarding different pests or diseases. It can also be
extended with new models. Figure 6.1 depicts a high-level view of PDIS. It is composed
of different modules.

Figure 6.1: High-level description of PDIS.

Models module. This module contains all the implementations for the defined AI
models, written in the Python language, which is the most popular language for machine
learning. The convolutional neural networks are built around the PyTorch[PGM+19]

63

6. Evaluation

library, the other algorithms are implemented using Scikit-learn[PVG+11]. Both libraries
are actively being improved and have a lot of support.

When the module is invoked, a configuration file (specified in JSON format) is initially
loaded. Listing A.1 shows the JSON schema1, which is used to validate the JSON
configuration file. This file defines the model types (Listing A.2) and the models
(Listing A.3) that are exposed by the module.

The model settings (Listing A.4) are defined as well. These settings can also be changed
from the user interface - the user interface elements are built dynamically, depending
on the type of setting. The settings may contain hyperparameters that are used by the
model, the data set to use, and more. The descriptions of the respective schemas can be
found in the supplementary materials.

The implementation attribute of a model points to the function that builds and
evaluates the model. It should receive a list of settings (Listing A.4) and return a pair,
which contains:

• the build and evaluation result, which is a JSON, with the schema defined in
Listing A.5

• the actual built model, which should be serializable, in order to be loaded later
again for classification purposes. The model must implement a function called
predict_file, which takes as an argument a file and returns a prediction result,
which is a JSON (Listing A.6). The predict_file function is invoked when
classifying a file object

After loading the configuration, the module starts an HTTP server. The server exposes
the functionality for building and evaluating a model. Also, it can predict file objects
using that model. A file object is a sample, which must have the same structure as the
samples of the data set that is used for training. Table A.1 shows a description of all
functionalities, exposed through an API.

Core and database. Written in Kotlin2, the core module is responsible for managing
the built models. The models (including the results) are persisted using a Postgres3

database instance. The core’s exposed functions can be used by any client, such as the
user interface module. Initially, the core module loads the configuration file from the
models module and then starts an HTTP server. Table A.2 lists and describes all the
endpoints that this HTTP server makes available.

User interface. The user interface for PDIS is written in React4, a front end library
that allows building user interfaces. Regarding the language, TypeScript5 is used, which

1https://json-schema.org
2https://kotlinlang.org
3https://www.postgresql.org
4https://reactjs.org
5https://www.typescriptlang.org

64

https://json-schema.org
https://kotlinlang.org
https://www.postgresql.org
https://reactjs.org
https://www.typescriptlang.org

6.3. Results

is a superset of JavaScript, bringing a lot of benefits, such as static typing, type safety,
immutability, null safety, and more. These features help to prevent runtime errors, which
are very common in dynamic programming languages, such as JavaScript. The user
interface makes use of all the functionalities exposed by the core:

• it is able to (dynamically) render information about the models types, models and
their settings, as they are described in the configuration file. It allows changing
these settings too

• it can build new models and evaluate them

• it can use them to predict or identify a disease

Implementing models. In order to implement a model, build it and use it to classify
a file object, the following steps need to be performed (illustrated through an example):

1. In this example, as described in Listing A.8, a model is implemented in a file
called logistic_regresion.py, inside the directory close_range_images.
A new function build_logistic_regression_model is implemented, which
can be used to build the model. The logistic regression model classifies images of
plants as tomato_healthy or tomato_late_blight

2. A configuration file like in Listing A.9 is provided, which configures one model
type and one model for it. The model points to the builder, configures the data
to be used and the solver, which is rendered as a drop-down in the user interface.
Optionally, cross-validation can be performed. The model and core modules are
then started

3. A new model build is started. The server dispatches a new model build job and
returns the build with ID 1 in RUNNING state, as described in Listing A.10

4. Later, when the build is successfully finished, the state is set to FINISHED_SUCCESS
and the models-module sends the results and the model file back to the core module.
Fetching the finished model build shows also the results (Listing A.11), without
the cross-validation report

5. Finally, the model is used to classify an image, which shows a diseased leaf (List-
ing A.12)

6.3 Results
This section presents the results of the application of the described AI models to their
respective data sets. All experiments are conducted using the following hardware:

• Operating System: Ubuntu 21.04 (64 bit)

65

6. Evaluation

• Storage: SSD

• RAM: 8 GB, with 8 GB swap space enabled

• CPU: Intel® Core™ i7-6500U CPU @ 2.50GHz × 4

• GPU: Intel Corporation Skylake GT2 [HD Graphics 520]

All the models are evaluated using Ye and Te, obtained from the split operation in the
build phase from Chapter 5. The evaluation results are summarized in Table 6.35.

6.3.1 Evaluation results for AI models for diseases that are caused by
cold weather

Tomato late blight logistic regression model

Tables 6.1, 6.2 and 6.3 show the evaluation results for this model. The best results are
achieved by using the L-BFGS optimization algorithm. An accuracy of 90% is achieved,
according to the confusion matrix.

Actual/Prediction Healthy Late blight
Healthy 107 11
Late blight 13 109

Table 6.1: Confusion matrix for tomato late blight logistic regression model.

Class Precision Recall F-score
Healthy 0.91 0.91 0.9
Late blight 0.89 0.89 0.9

Table 6.2: Class specific metrics for tomato late blight logistic regression model.

Metric Value
Accuracy 0.9
Build time 98 seconds
Evaluation time 5 seconds
Model size 3.1 MB

Table 6.3: Results for tomato late blight logistic regression model.

Figure 6.2 shows the curves, which reflect the high precision, recall and F-score. With the
help of these curves, a probability threshold equal to 0.9 is manually selected for predicting
the late blight disease, i.e. a leaf is classified as diseased only with high certainty, requiring
a high precision. Without adjusting this threshold, accuracy, precision and recall are
smaller. Similar results are also obtained during cross-validation, i.e. no overfitting is
present.

66

6.3. Results

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

(a) Precision-recall curve

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

FPR

R
ec

al
l

(b) ROC curve

Figure 6.2: Curves for tomato late blight logistic regression model, blue stands for the
healthy class and green for the late blight class.

Building the model takes longer than evaluation, since 256 ∗ 256 features are used as
an input, being a considerably high number. The model size of 3.1 MB makes this
model small, allowing it to be loaded quickly for classification. Diseased images, that are
misclassified as healthy, have the following characteristics:

• some images are segmented, which is causing problems for the algorithm. These
images are labeled as diseased, however, they appear to be completely healthy

• the rest of the images appear under high intensity of light, therefore, also the
shadow of a leaf can be seen

All the healthy images that are classified as diseased are very similar to each other, light
is causing problems as well.

Tomato late blight support-vector machine model

Tables 6.4, 6.5 and 6.6 show the results after applying the support-vector machine model,
with the linear kernel. The other kernels achieve similar results. Adjusting the probability
threshold is not needed, using the default one (0.5) achieves the best results. Therefore,
the curves, which look very similar to the ones of the logistic regression model, are not
shown. Build time and size of the model are high, since complex functions need to be
learned.

The healthy images that are wrongly identified with late blight are the same as the ones
that the logistic regression model incorrectly identifies. Images with late blight classified
as healthy do not follow a clear pattern, some have more light, some less. Overall, this
model achieves good results, with the cost of high building, evaluation and also loading

67

6. Evaluation

times. Similar results are achieved during all folds of cross-validation, no overfitting can
be detected.

Metric Value
Accuracy 0.91
Build time 12 minutes
Evaluation time 45 seconds
Model size 258 MB

Table 6.4: Results for tomato late blight support-vector machine model.

Actual/Prediction Healthy Late blight
Healthy 106 9
Late blight 13 112

Table 6.5: Confusion matrix for tomato late blight support-vector machine model.

Class Precision Recall F-score
Healthy 0.92 0.92 0.91
Late blight 0.9 0.9 0.91

Table 6.6: Class specific metrics for tomato late blight support-vector machine model.

Tomato late blight convolutional neural network model

From the defined models for tomato late blight disease, the best one is the convolutional
neural network model. As Tables 6.7, 6.8 and 6.9 show, the accuracy and the other scores
are very high. Building a model takes about 4 minutes, and evaluation is fast. Also, the
model size allows a fast loading of the model for later usage. All the diseased images are
classified as such. Only three healthy images are classified as diseased. For this model,
the curves cannot be calculated, as it returns no probabilities as its final output, but a
vector.

Metric Value
Accuracy 0.99
Build time 4 minutes
Evaluation time 3 seconds
Model size 27.4 MB

Table 6.7: Results for tomato late blight convolutional neural network model.

Figure 6.3 shows an infected leaf, that is correctly classified. This is one of the leaves that
the other models are not able to classify as diseased. The darker spots on the feature
map are the interesting parts that the neural network uses in the next layers. In some

68

6.3. Results

Actual/Prediction Healthy Late blight
Healthy 110 3
Late blight 0 127

Table 6.8: Confusion matrix for tomato late blight convolutional neural network model.

Class Precision Recall F-score
Healthy 0.97 0.97 0.99
Late blight 1.0 1.0 1.0

Table 6.9: Class specific metrics for tomato late blight convolutional neural network
model.

images, the dark spots match with the late blight spots. Other filters concentrate on the
background of the image and on the edges. This is because, besides changing color, the
leaf also changes the shape during infection.

Figure 6.3: Feature map of a tomato leaf infected with late blight.

Wheat stripe rust logistic regression model

Table 6.10 shows the feature specific odds[Spe14] for the low risk class (0). They represent
the influence of a feature on the classification result. It can be seen that a low risk is
predicted with high frequencies of a humidity greater than 90% and dominant frequencies
of high rainfall. Otherwise, a high risk is predicted. These properties comply with the
interpretation of the data set from Chapter 5. The species has an important impact as
well. Durum species are, in this data set, much less susceptible to wheat stripe rust.

Tables 6.11, 6.12 and 6.13 list the evaluation results for this model. Since only a few
features need to be learned, the model is very small, with a fast build. Looking at the
confusion matrix, it can be seen that only for two samples, a high risk was incorrectly
predicted. The values are very favorable for development of wheat stripe rust, however,
there are no incidents reported. As the authors state, this could be also because of a

69

6. Evaluation

Feature Odd
Site 1.13241162
Species 3.18307169
R1 0.64860079
R2 1.14355611
R3 1.23635266
R4 1.0
H1 0.22596029
H2 1.33353062
H3 1.92664038
H4 0.76745411
H5 3.27317224
T1 0.9999897
T2 0.5411552
T3 1.49680053
T4 1.91722448
T5 1.25100998
T6 1.11536433
T7 2.53703226

Table 6.10: The odds for the low risk class of the logistic regression model.

selective application of pesticides, preventing the development of the disease. Most of
the high-risk samples that are incorrectly classified as low risk have an incidence less
than 50, i.e. it is close to the incidence for low risk samples. This represents a limitation
of this model, which cannot distinguish between levels of disease, but is rather discrete.
Therefore, this should be improved in the future, as more data becomes available.

Metric Value
Accuracy 0.86
Build time 4 seconds
Evaluation time 1 second
Model size 1.1 KB

Table 6.11: Results for wheat stripe rust logistic regression model.

Actual/Prediction Stripe rust low risk Stripe rust high risk
Stripe rust low risk 27 2
Stripe rust high risk 9 40

Table 6.12: Confusion matrix for wheat stripe rust logistic regression model.

70

6.3. Results

Class Precision Recall F-score
Stripe rust low risk 0.93 0.93 0.93
Stripe rust high risk 0.82 0.82 0.82

Table 6.13: Class specific metrics for wheat stripe rust logistic regression model.

6.3.2 Evaluation results for AI models for diseases that are caused by
hot weather

Corn northern leaf blight AI models

Tables 6.14, 6.15 and 6.16 show the evaluation results for the corn northern leaf blight
logistic regression model.

Metric Value
Accuracy 0.97
Build time 85 seconds
Evaluation time 2 seconds
Model size 3.1 MB

Table 6.14: Results for corn northern leaf blight logistic regression model.

Actual/Prediction Healthy Northern leaf blight
Healthy 94 4
Northern leaf blight 3 91

Table 6.15: Confusion matrix for corn northern leaf blight logistic regression model.

Class Precision Recall F-score
Healthy 0.96 0.96 0.96
Northern leaf blight 0.97 0.97 0.97

Table 6.16: Class specific metrics for corn northern leaf blight logistic regression model.

The best results are achieved by using the L-BFGS solver. The accuracy is very high.
Figure 6.4 shows the curves, which suggest that 0.85 is the best probabilistic threshold
to use. Very good results are obtained during cross-validation as well. Short building
times and model size of 3.1 MB make this model useful.

The support-vector machine (with the linear kernel) and the convolutional neural network
models perform better. The convolutional neural network obtains the best results in
terms of accuracy and building performance. See the respective tables for the evaluation
results.

In general, identifying corn northern leaf blight is not very difficult. This is because of
the nature of the disease, northern leaf blight is spread across all the leaf. Another reason

71

6. Evaluation

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

(a) Precision-recall curve

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

FPR

R
ec

al
l

(b) ROC curve

Figure 6.4: Curves for corn northern leaf blight logistic regression model, blue stands for
the healthy class and green for the northern leaf blight class.

Metric Value
Accuracy 0.99
Build time 8 minutes
Evaluation time 25 seconds
Model size 85 MB

Table 6.17: Results for corn northern leaf blight support-vector machine model.

Actual/Prediction Healthy Northern leaf blight
Healthy 127 1
Northern leaf blight 1 111

Table 6.18: Confusion matrix for corn northern leaf blight support-vector machine model.

Class Precision Recall F-score
Healthy 0.99 0.99 0.99
Northern leaf blight 0.99 0.99 0.99

Table 6.19: Class specific metrics for corn northern leaf blight support-vector machine
model.

are the types of images from the data set. The corn images show only the leaf, i.e. there
is no background noise. Also, the actual shape of the leaves doesn’t play an important
role. For corn leaves, fewer features have to be learned.

72

6.3. Results

Metric Value
Accuracy 0.99
Build time 4 minutes
Evaluation time 3 seconds
Model size 27.4 MB

Table 6.20: Results for corn northern leaf blight convolutional neural network model.

Actual/Prediction Healthy Northern leaf blight
Healthy 115 1
Northern leaf blight 0 127

Table 6.21: Confusion matrix for corn northern leaf blight convolutional neural network
model.

Class Precision Recall F-score
Healthy 0.99 0.99 0.99
Northern leaf blight 1.0 1.0 1.0

Table 6.22: Class specific metrics for corn northern leaf blight convolutional neural
network model.

Cucumber Fusarium wilt logistic regression model

Tables 6.23, 6.24 and 6.25 show the evaluation results for the logistic regression model,
with the L-BFGS solver.

Metric Value
Accuracy 0.96
Build time 1 minute
Evaluation time 1 second
Model size 710 KB

Table 6.23: Results for cucumber Fusarium wilt logistic regression model.

Actual/Prediction Healthy Diseased
Healthy 97 3
Diseased 4 90

Table 6.24: Confusion matrix for cucumber Fusarium wilt logistic regression model.

Build and evaluation times are short. The model size is small and the scores very high.
Similar results are achieved during the cross-validation runs. The precision-recall curves,
but also the ROC curves from Figure 6.5, show that this model is performing good.
There are just a few samples that are misclassified:

73

6. Evaluation

Class Precision Recall F-score
Healthy 0.97 0.97 0.97
Diseased 0.96 0.96 0.96

Table 6.25: Class specific metrics for cucumber Fusarium wilt logistic regression model.

• images of diseased leaves from the first day are very similar to the healthy leaves.
The only difference is the temperature of the veins, which is slightly higher for the
diseased leaves, making them appear in yellow color. These diseased images are
incorrectly classified as healthy

• similarly, healthy images are confused with diseased images from the first day

It is worth mentioning that, even manually, it is not easy to distinguish between healthy
and diseased images for day one.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

(a) Precision-recall curve

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

FPR

R
ec

al
l

(b) ROC curve

Figure 6.5: Curves for the cucumber Fusarium wilt logistic regression model, blue stands
for the healthy class and green for the diseased class.

Cucumber Fusarium wilt convolutional neural network model

Tables 6.26, 6.27 and 6.28 show the evaluation results for the convolutional neural network
model. It is performing slightly better than the logistic regression model, with very good
scores and optimal build time and size. The only confused diseased sample is one from
day one, which is incorrectly classified as healthy.

Figure 6.6 shows some generated filters. The image represents an infected cucumber leaf,
for which the infection has just started. It can be seen how the filters are concentrating
on the infected parts, which in this case are only the veins of the leaf. Other filters
concentrate, as usual, on the background of the leaf.

74

6.3. Results

Metric Value
Accuracy 0.99
Build Time 4 minutes
Evaluation Time 1 second
Model size 13.6 MB

Table 6.26: Results for cucumber Fusarium wilt convolutional neural network model.

Actual/Prediction Healthy Diseased
Healthy 117 0
Diseased 1 125

Table 6.27: Confusion matrix for cucumber Fusarium wilt convolutional neural network
model.

Class Precision Recall F-score
Healthy 1.0 1.0 1.0
Diseased 0.99 0.99 1.0

Table 6.28: Class specific metrics for cucumber Fusarium wilt convolutional neural
network model.

Figure 6.6: Feature map for an infected cucumber leaf in its early infection stage.

Rice sheath blight convolutional neural network model

Tables 6.29, 6.30 and 6.31 show the evaluation results for this model.

A major noticeable drawback is the time needed to build this model, which is one hour.
This happens because the number of training epochs is large. Taking into account the
high similarity between images from different classes, an accuracy, precision, recall and
F-score around 70% is still a good score. Looking at the confusion matrix, it can be seen
that the model is able to distinguish between low risk and the other two classes. This
happens because the difference in color between low risk images and the others is more
obvious than it is between medium and high-risk classes. This is the case for most of the

75

6. Evaluation

Metric Value
Accuracy 0.73
Build time 1 hour
Evaluation time 3 seconds
Model size 8.1 MB

Table 6.29: Results for rice sheath blight convolutional neural network model.

Actual/Prediction Sheath blight low Sheath blight medium Sheath blight high
Sheath blight low 91 16 12
Sheath blight medium 12 92 21
Sheath blight high 13 25 83

Table 6.30: Confusion matrix for rice sheath blight convolutional neural network model.

Class Precision Recall F-score
Sheath blight low 0.76 0.76 0.77
Sheath blight medium 0.74 0.74 0.74
Sheath blight high 0.69 0.69 0.7

Table 6.31: Class specific metrics for rice sheath blight convolutional neural network
model.

Figure 6.7: Feature map for a rice canopy, infected with sheath blight.

images. However, in some cases, a color change doesn’t necessarily mean the presence of
the disease, making the color not the ideal feature to solve this problem. Besides the
color, the morphology of the cultivars could have been an important feature. With a
better quality, it would have been possible to detect problems, such as collapsed plants.

76

6.3. Results

Closer images were captured from an altitude of 5.5 meters, but only 4 cultivars were
made available by the authors, not being enough to construct a proper data set, with a
high diversity.

Figure 6.7 shows the feature map for the filters (kernels) from the first convolutional
layer, for a high-risk rice sheath blight image. Filters are focusing on some areas of
the canopy, which cannot be seen normally. By using these filters, the model is able to
correctly classify this image.

6.3.3 Evaluation results for AI models for diseases that are caused by
pests

Tables 6.32, 6.33 and 6.34 show the evaluation results for the chlorosis convolutional
neural network model.

Metric Value
Accuracy 0.91
Build time 7 minutes
Evaluation time 3 seconds
Model size 29.2 MB

Table 6.32: Results for the chlorosis convolutional neural network model.

Actual/Prediction Healthy Whitefly
Healthy 134 15
Whitefly 11 125

Table 6.33: Confusion matrix for the chlorosis convolutional neural network model.

Class Precision Recall F-score
Healthy 0.9 0.9 0.91
Whitefly 0.92 0.92 0.91

Table 6.34: Class specific metrics for the chlorosis convolutional neural network model.

During cross-validation, the accuracy, precision, recall and F-score are always around 0.9.
This is an acceptable result, considering the high diversity of the data set. Rotation is one
of the augmentation operations that are performed, and the results show that the model
is also invariant against it. The building takes time, because of the number of epochs.
The model size is suitable for loading. The evaluation itself is very fast. Images of healthy
leaves that are confused as images with whiteflies have the following characteristics:

• some leaves have small white spots. These are detected as whiteflies

• the white veins of the leaves are causing problems as well

77

6. Evaluation

Figure 6.8: Feature map for a leaf with whiteflies.

• light, reflecting on some leaves, is very similar to some whitefly infestation images.
Even manually, it is difficult to distinguish them at first glance

Images with whiteflies classified as healthy have the following characteristics:

• for some images, even manually, it is difficult to see that they contain whiteflies

• some images have very few whiteflies

• the rest of the images are confused due to the diversity of the data set. The healthy
images are more similar to each other than the ones that contain whiteflies

In general, if an image is confused, so are its augmented versions.

Figure 6.8 shows the feature map, generated after classifying a test image. It can be
seen that some filters are concentrating not only on the whiteflies, but also on their eggs,
which are more difficult to see, because of their small size. Results show that this is the
case for most of the whiteflies, i.e. only a few are missed. Other filters are focused on
the background.

78

6.3. Results

Model Build
time

Eval.
time

Size Acc. Precision Recall F-score

Tomato late
blight logistic
regression model

01:28 00:05 3.1 0.9 Healthy: 0.91
Diseased: 0.89

Healthy: 0.91
Diseased: 0.89

Healthy: 0.9
Diseased: 0.9

Tomato late
blight support-
vector machine
model

12:00 00:45 258 0.91 Healthy: 0.92
Diseased: 0.9

Healthy: 0.92
Diseased: 0.9

Healthy: 0.91
Diseased: 0.91

Tomato late
blight convolu-
tional neural
network model

04:00 00:03 27.4 0.99 Healthy: 0.97
Diseased: 1.0

Healthy: 0.97
Diseased: 1.0

Healthy: 0.99
Diseased: 1.0

Corn northern
leaf blight lo-
gistic regression
model

01:25 00:02 3.1 0.97 Healthy: 0.96
Diseased: 0.97

Healthy: 0.96
Diseased: 0.97

Healthy: 0.96
Diseased: 0.97

Corn north-
ern leaf blight
support-vector
machine model

08:00 00:25 85 0.99 Healthy: 0.99
Diseased: 0.99

Healthy: 0.99
Diseased: 0.99

Healthy: 0.99
Diseased: 0.99

Corn northern
leaf blight convo-
lutional neural
network model

04:00 00:03 27.4 0.99 Healthy: 0.99
Diseased: 1.0

Healthy: 0.99
Diseased: 1.0

Healthy: 0.99
Diseased: 1.0

Chlorosis convo-
lutional neural
network model

07:00 00:03 29.2 0.91 Healthy: 0.9
Diseased: 0.92

Healthy: 0.9
Diseased: 0.92

Healthy: 0.91
Diseased: 0.91

Cucumber
Fusarium wilt
logistic regres-
sion model

01:00 00:01 0.7 0.96 Healthy: 0.97
Diseased: 0.96

Healthy: 0.97
Diseased: 0.96

Healthy: 0.97
Diseased: 0.96

Cucumber
Fusarium wilt
convolutional
neural network
model

04:00 00:01 13.6 0.99 Healthy: 1.0
Diseased: 0.99

Healthy: 1.0
Diseased: 0.99

Healthy: 1.0
Diseased: 1.0

Rice sheath
blight convolu-
tional neural
network model

60:00 00:03 8.1 0.73
Low risk: 0.76
Med risk: 0.74
High risk: 0.69

Low risk: 0.76
Med risk: 0.74
High risk: 0.69

Low risk: 0.77
Med risk: 0.74
High risk: 0.7

Wheat stripe
rust logistic
regression model

00:04 00:01 0.01 0.86 Low risk: 0.93
High risk: 0.82

Low risk: 0.93
High risk: 0.82

Low risk: 0.93
High risk: 0.82

Table 6.35: Summary of evaluation results. Times are in minutes, sizes in MB.

79

CHAPTER 7
Discussion

In this chapter, AI models are compared with conventional models. For each model type
and disease, the best AI model is selected and compared with the respective conventional
model(s), also of the same model type, identifying the same disease. The comparison
results are summarized in Table 7.1.

7.1 Comparison of models for diseases that are caused by
cold weather

Tomato late blight convolutional neural network model vs image-processing
model
The convolutional neural network model is selected for comparison. According to the
metrics from the previous chapter, this model has the highest scores in terms of accuracy,
precision and recall. It has an optimal size, allowing it to be loaded fast, in order to
perform the classification. Through the feature maps, this model does (visually) provide
details about the learned features.
The tomato late blight image-processing model is tested with the tomato late blight data
set, available in the supplementary materials. It is able to detect, in most of the cases,
the correct spots where the leaves are infected. However, besides detecting these spots, it
is also wrongly indicating other regions as diseased. Since the leaves change their shape
(that is, they fold up) during the disease, in some images, shadows appear over the leaves.
These shadows are wrongly detected as infected spots, since their regions have a different
color than the leaf. For the convolutional neural network model, this problem does not
occur. Since it is trained enough, its filters are focusing also on the (changed) shape of
the leaves.
The image-processing model is also having troubles with high light intensities on a leaf
and is identifying these spots as diseased. While this happened only a few times for

81

7. Discussion

the convolutional neural network model, this problem occurs much more often with the
image-processing one. Another disadvantage for the image-processing model is that it
is very sensitive to background noise. Sometimes, it ends up segmenting the entire leaf,
instead of the diseased spots on it. This is for healthy tomato leaves, the case. According
to the feature maps, the convolutional neural network model creates filters that focus on
the background too, preventing this problem from happening.

The convolutional neural network is more focused on identifying whether a disease is
present or not, not offering a possibility to see where the disease occurs. However, feature
maps provide a way to visualize the diseased spots. Because of this and its better practical
application, it can be concluded that it performs better than the image-processing model.

Wheat stripe rust logistic regression model vs weather model

Both models are tested with the wheat weather data set, available in the supplementary
materials. The wheat stripe rust logistic regression model can only distinguish between
low and high risk for wheat stripe rust, while the weather model is able to assess more
levels of the disease severity, from 0 to 100. The logistic regression model is more discrete
because more data is needed, this would allow assessing more levels too.

As the evaluation results show, the logistic regression model is able to learn that low
rainfall and a low frequency of humidity greater than 90% during a week are suitable
for the development of the disease. This is nothing but what the authors of the weather
model report in their work. Both models are light from a computational point of view, i.e.
no special hardware capabilities are required. The accuracy is for both models around
90%. The results from the models depend on the site and wheat species. Therefore,
a general model for identifying wheat stripe rust does not exist and the location and
species need to be taken into consideration too, when performing the calculations. The
two models find that durum wheat is more resistant against wheat stripe rust disease
than the bread species.

Both models, however, have their limitations. They assume that all the assessed plants
have the same disease severity, which is normally not the case in practice. Also, there are
other factors that might have an impact, such as whether pesticides are applied or not.
These need to be integrated into the process of building a plant disease identification
model as well. For both models, their robustness depends on the available data. For the
logistic regression model, training data is essential to prevent problems such as overfitting.
The weather model needs more data, in order to verify the correctness. The authors
state that more assessments are needed so that the model can generalize better.

The logistic regression model is able to perform at least as good as the weather model.
With enough data, it can be extended to identify different levels of the disease. An
advantage of the logistic regression model is, as it is typical in machine learning, that
there is no need to describe how to classify the data. Due to the nature of machine
learning algorithms, they are able to learn patterns, as more data and features come in,

82

7.2. Comparison of models for diseases that are caused by hot weather

allowing them to improve over time. The authors of the weather model needed to look
into historic weather data to find a relationship between the weather variables and the
disease, which is a much more time-consuming task. For both models, it is still difficult
to use them in a real farm, because of the lack of data. They both opt for automated
plant disease identification and serve as a good starting point for further development
and research.

7.2 Comparison of models for diseases that are caused by
hot weather

From the three corn northern leaf blight AI models, the convolutional neural network
model delivers the best evaluation results. It is compared with two conventional models.
In the supplementary materials, the corn northern leaf blight data set can be found,
which is used for testing the models.

Corn northern leaf blight convolutional neural network model vs image-
processing plant disease severity model

The image-processing plant disease severity model is able to identify parts that are
infected with northern leaf blight. Segmentation makes this model robust to background
noise. However, sometimes, the edges of the leaf are not removed. Not all healthy pixels
are removed, some can still be seen. This model is, in some situations, sensitive to
shadows and high light intensities. Sometimes, the tail of a leaf and its veins are not
removed, due to the color difference. This is the case also for the few healthy images
that the convolutional neural network model incorrectly classifies as diseased.

The operations that the image-processing plant disease severity model performs on an
image are less complex than what the convolutional neural network model does, which
makes the process of identification quicker.

The convolutional neural network model uses more resources than traditional computer
vision algorithms do. However, in recent years, the processing power has increased and
does not represent a big challenge anymore, as it might have been in the past.

The conventional model does not require a training phase and consumes fewer resources.
Sometimes, it wrongly detects and classifies some parts of the leaves as diseased. Because
of this, it is not very suitable for automated disease identification, which is its biggest
disadvantage, especially for practical application in agriculture. However, it is useful
when analyzing images manually.

Corn northern leaf blight convolutional neural network model vs color fea-
tures plant disease identification model

The color features plant disease identification model is another conventional approach.
The healthy corn images from the data set are shot under high light intensities. These

83

7. Discussion

images contain some white spots. These spots are incorrectly segmented as diseased
parts by this model. The veins, having a different (whiter) color than the rest of the
leaf, are causing problems. The model deals better with shadows, these are successfully
eliminated. Overall, the corn northern leaf blight convolutional neural network model is
able to correctly classify nearly all images, regardless if they show healthy or diseased
leaves, independent of the conditions on which they were captured. Therefore, it is a
better choice to (automatically) identify northern leaf blight of corn.

Combining AI models with conventional models might lead to an improvement. The
computer vision based approaches can be used to pre-process images for the AI models.
This is a very common data preparation step.

Cucumber Fusarium wilt convolutional neural network model vs infrared
image-processing plant disease identification model

Both models use the cucumber thermal leaf images data set, which can be found in the
supplementary materials. The cucumber Fusarium wilt convolutional neural network
model is selected for comparison, because its evaluation results are the best. It can
be trained in a short amount of time, and classification is fast. Although the infrared
image-processing plant disease identification model focuses on detecting diseases for tea
leaves, the authors also state that their approach can be used for other plant types as
well.

The goal of the conventional model is to remove healthy parts from the leaf image, leaving
out only the diseased ones. It is correctly detecting the red spots for the diseased leaves.
Since this model applies image-processing techniques, it is rotation angle-invariant. The
convolutional neural network model has this property too.

The conventional model does not require any training or complex algorithms to classify
images, making it faster and less CPU-intensive. A shortcoming of this model is that it
focuses only on the red color to detect an infected leaf. It is not able to detect infected
leaves in their earlier stages of the disease. That is, the model is removing yellow parts
from the leaf, although they represent diseased parts. The convolutional neural network
model does better in this regard.

The conventional model is very sensitive to background noise. If the leaves are completely
healthy and a background with a different color is present, then, in some situations,
the background is removed, but not the leaf. As it is the case for other conventional
models that are based on image-processing, also this one does not completely remove the
healthy areas, even though it is applying operations such as erosion, making it difficult
for automated use.

Because of this, the convolutional neural network model is the better choice to be used
for disease identification. Because this model focuses on color features, fewer filters are
needed to be learned, making it less CPU-intensive than other AI models. However,
this comes at a cost. While the actual process of identification is easier than it is for

84

7.2. Comparison of models for diseases that are caused by hot weather

the other models, the environmental dependence is higher. Images need to be taken in
ideal conditions, which is often difficult, due to the temperature of the environment and
sunlight. This can lead to incorrect infrared images.

Not only the weather conditions can have an impact, but also objects being close to
the plants. For example, because of shadows and reflectance coming from these objects,
the cameras might deliver different results. For a perfect infrared image, a flat leaf
morphology is the best, making the angle from which the images are taken also an
important choice. Only if all these conditions are met, then this model will have a
practical application. Regarding the cameras, fortunately, they have become affordable
in recent years. This type of model cannot be used for all the diseases, since not for all
plants the temperature will change when there is a lack of water.

Rice sheath blight convolutional neural network model vs multispectral imag-
ing model

The models are compared using the rice remote sensing data set, available in the
supplementary materials. It is worth mentioning that the rice sheath blight multispectral
imaging model can distinguish between nine disease severities, while the convolutional
neural network model can do it only for three levels. The reason for that is that there is
not enough data, which is needed for training. When enough training data for each class
is available, then this model can be extended to differentiate between nine classes. This
also holds for the conventional model, i.e. it will be able to deliver more realistic results,
the more data is available. This data has to be acquired under ideal weather conditions,
otherwise both of these models will not output useful results.

The main disadvantage for the convolutional neural network model is the time needed
for training. This is because of the high number of training epochs. This problem does
not exist for the conventional model, which is only based on calculations on the fly, using
formulas. A long calculation time shouldn’t be a big problem for practical application,
since this process can happen in the background from time to time, not affecting the
usage at all. It will be possible to reduce this number only when the quality of the images
will be higher, allowing to observe more details of the canopies, such as their morphology.
For instance, an indicator to the severity of the disease could be the number of collapsed
plants. While the authors of the conventional model state that using color features is
only possible to qualitatively assess the severity of a disease, this is not the case for the
convolutional neural network model. As the evaluation results show, this model is still
able to quantify three levels of rice sheath blight. However, it is worth mentioning that
a color change of the tissue from green to yellow or brown does not necessarily mean
that the tissue is infected. This remains an important disadvantage for the convolutional
neural network model, if based only on color features.

The authors of the conventional model also report that using NDVI (image) data, better
results can be obtained. Their model can quantify disease levels with an accuracy of
63%. Considering that the AI model uses the normal RGB images and can distinguish

85

7. Discussion

between three levels of the disease with an accuracy of at least 70%, it offers a good
alternative to the conventional one. Both models can be used for automated disease
monitoring. One drawback of the conventional model is that for each canopy, a sampling
area needs to be selected, and this area can affect the accuracy of detecting sheath blight.
The convolutional neural network model is able to automatically learn which area of the
canopy to concentrate on. By using NDVI images, it is easier to visually immediately see
the severities of the disease. This is not possible with model the convolutional neural
network model, the feature maps will only be helpful in some situations. Unfortunately,
the NDVI data is not made available by the authors, which is why it can’t be used
to develop an AI model. This should serve as a reference for further research in this
direction, since it is expected that an AI model would outperform the conventional model,
if the needed training data would be available.

7.3 Comparison of models for diseases that are caused by
pests

For whitefly identification, the chlorosis convolutional neural network is compared with
the conventional models. As the evaluation results show, it has a good size, so that
it can be loaded fast for classifying images. Although some conventional models are
focusing more on counting whiteflies, they can be used for comparison as well. That is, if
they count at least one whitefly, then there exists a potential risk for a disease, such as
chlorosis. If zero whiteflies are counted, then the leaf is considered as healthy. For all
models, the whiteflies data set from the supplementary materials is used.

Chlorosis convolutional neural network model vs image-processing detection
model

Since the image-processing whiteflies detection model checks for white colors, it is image
rotation invariant. In many situations, whiteflies are correctly detected. However,
different intensities of light and shadows are causing problems and are therefore not
removed. The same holds for veins and white spots (which are not whiteflies) on healthy
leaves. Also, whiteflies being very close to each other are detected as a single one. This is
the case, especially for images showing whitefly infestation. Small eggs are also difficult
to detect. As it can be seen from the feature map, the convolutional neural network
model is better in this regard. The conventional model has problems with the background
of the leaves too. That is, due to the difference between background color and leaf color,
a healthy leaf is detected as a whitefly. The model works better without the presence of
background noise.

Adding noise (small dots) across the image is one of the augmentation operations that
increases the image entropy. The color model that is used for the transformation is
chosen based on this entropy, in order to detect transitions of colors, i.e. transitions
from the leaf color to the whitefly color and vice-versa. This should only happen for the

86

7.3. Comparison of models for diseases that are caused by pests

whitefly, but because of the color variations, it does also happen for the added noise. The
convolutional neural network model, if trained enough, is very robust and resistant to
this noise.

Another disadvantage is the test data that the conventional model uses, which consists
only of a few samples. Because of this, this model does not tend to generalize very
well. In general, it is difficult to use this conventional model for automated whitefly
identification, making it not very usable in a real system to assist farmers, which is its
major drawback. This conventional model should have a different focus - it should serve
more for researching purposes.

Chlorosis convolutional neural network model vs image-processing counting
model

The image-processing whiteflies counting model was tested with over 400 images when
it was implemented by the authors. All images were manually segmented as a first pre-
processing step, not taking into account the morphology of the leaf, which should make
things easier, but can represent a disadvantage in practice. Several color transformations
were proposed and one was selected, since it was reported that it performs the best for
whiteflies, in all their life cycle stages. The authors reported a few limitations for this
model. First, the model was tested always under perfect light conditions. Second, the
model was tested only with whiteflies on soybean leaves. According to the results, the
convolutional neural network model does not have these limitations.

As part of the comparison, the model was also tested with the constructed whiteflies
data set. In some small images, which are heavily occupied by whiteflies, this model does
not detect any of them, due to them being too close to each other. In some other images,
veins and stems of the leaves are not removed and detected as whiteflies. High light
intensities parts are successfully removed. However, this does also include the whiteflies
on these parts. The same behaviour is observed with low light conditions, in this case, no
whiteflies are detected. In general, the bigger the whiteflies on the image, the better this
model performs. Exceptions include situations, where the whitefly is very big, occupying
more than 50% of the image, then it is also not detected. Almost for every image, some
whiteflies are missed.

The convolutional neural network model, being also invariant to the whitefly size, does
not have these problems, as the results show. From the conventional models that were
analyzed, this one obtained the best results.

Chlorosis convolutional neural network model vs image-processing pest de-
tection model

The image-processing pest detection model is more focused on the general detection of
pests and insects on leaves, which makes it applicable for detecting whiteflies too. This
model was trained only with a few images, i.e. it does not generalize very well. Like

87

7. Discussion

the other models, it has problems with high and low light intensities, leaf veins, and
stems. Whitefly eggs are difficult to detect. It performs better on bigger whiteflies. For
healthy images, like the image-processing whiteflies counting model, it does not detect
any whiteflies, if there is an external disturbance, such as light. This model produces
similar results to the image-processing whiteflies counting model. The convolutional
neural network model is a better choice, in terms of accuracy and practical application
in agriculture.

Models that are focused on counting the whiteflies are more suitable for integration into
an automated system for classification. However, they are too sensitive against varying
light intensities and other external factors. They do not require training data like the AI
models do, which makes them very light from a computational point of view. However, a
disadvantage is the test data they use. Either it consists only of a few samples, or images
were taken in too perfect conditions. They are too dependent on the data. Therefore, it
is expected that the convolutional neural network model will perform better.

For identification, the feature maps show how the whiteflies are identified. The accuracy is
high, making the AI model, if trained with enough data, the better choice for automated
whitefly identification. Training and building the convolutional neural network model
takes some time, and this is a drawback. However, building newer models is a process
that can happen in the background from time to time, while the current one can still be
used, not affecting or blocking the usage.

88

7.3. Comparison of models for diseases that are caused by pests

Models compared Data Conventional model AI model
Tomato late blight con-
volutional neural network
model vs image-processing
model

Tomato
late
blight

- identifies shadows as diseased
- sensitive to light and noise -
locates disease
- not suitable for practical use

- shadows and noise ignored
- feature maps show diseased areas
- computationally more expensive
- practical automated application

Wheat stripe rust logistic
regression model vs
weather model

Wheat
weather

- can assess 100 disease levels
- predicts disease using formula
- all plants equally susceptible
- application in a real farm
difficult because of lack of data

- can assess low or high risk
- learns the formula, builds fast
- ignores external factors
- application in a real farm
difficult because of lack of data

Corn northern leaf blight
convolutional neural
network model vs
image-processing plant
disease severity model

Corn
northern
leaf
blight

- edges, veins and tails of leaves
detected as infected
- sensitive to shadows and light
- useful for analyzing images
manually

- sometimes, veins and tails
interpreted as diseased spots
- computationally more expensive
- suitable for practical automated
application

Corn northern leaf blight
convolutional neural
network model vs
color features plant disease
identification model

Corn
northern
leaf
blight

- shadows ignored, but light
causes problems
- useful for analyzing images
manually

- requires some computation
power, but nearly all images
correctly classified
- suitable for practical application

Cucumber Fusarium wilt
convolutional neural
network model vs infrared
image-processing plant
disease identification model

Cucumber
thermal
leaf
images

- not able to detect early stages
of the disease
- sometimes, problems with
background noise
- not suitable for practical use

- requires more resources, but
identifies disease
- suitable for practical application
only if external factors are
considered too

Rice sheath blight
convolutional neural
network model vs
multispectral imaging
model

Rice
remote
sensing

- detects 9 levels of disease
- requires manual sampling of
area of interest
- more data available for testing
- can be used in agriculture

- detects 3 levels of disease
- requires computation time
- color change does not always
indicate an infection
- can be used in agriculture
if more data is available

Chlorosis convolutional
neural network model vs
image-processing detection
model

Whiteflies

- light, shadows, leaf veins,
noise confused with whiteflies
- does not detect leaves with
high whitefly infestation
- not suitable for practical use

- very resistant to noise
- classifies nearly all images
correctly
- suitable for practical application

Chlorosis convolutional
neural network model vs
image-processing counting
model

Whiteflies

- assumes ideal conditions
- tested with soybean leaves
- detects veins as whiteflies
- issues with eggs and infestation
- not suitable for practical use

- resistant to light and takes
morphology of leaves into account
- tested with different leaf-types
- invariant against whitefly size
- suitable for practical application

Chlorosis convolutional
neural network model vs
image-processing pest
detection model

Whiteflies

- does not generalize well
- problems with varying light
intensities and leaf veins
- does not detect whitefly eggs
- experimental, not suitable for
practical automated application

- tested with a data set that has a
high diversity
- detects whitefly eggs
- suitable for practical automated
application

Table 7.1: Summary of comparison results. The AI models require more computation
time, but generalize better and can be used in agriculture.

89

CHAPTER 8
Conclusion

8.1 Summary
This thesis presents models that are able to identify pests and diseases in plants, based
on algorithms from Artificial Intelligence (AI). A tool is implemented, which allows:

• integrating models that are developed in the Python programming language

• customizing these models through a user interface, which is able to generate views
that can manipulate model properties

• building and evaluating models

• using models to predict/identify pests/diseases in plants

• integration with other tools, through an API

• growers to monitor their agricultural fields

The implemented models should also inspire for more research in this direction. The first
step would be the acquisition of more data, allowing not only to build new models, but
also verifying that they work as intended, i.e. they are not biased.

Additionally, the AI models are compared with conventional models, which are traditional
models that do not use AI techniques. Models are categorized into model types, which
serve to group similar models together. Some model types may use weather data, others
use image data. For five of the identified model types, AI models are defined, and
conventional models are identified as well. Comparison results show that the AI models
are able to outperform the conventional models, in most of the situations. The availability
of data is imperative to achieve this. Challenges include lack and diversity of the data.
Data augmentation techniques are described and applied.

91

8. Conclusion

The models are evaluated according to different metrics, which include quantitative
features, such as accuracy and the time needed to build a model, but also qualitative
features, like the possibility to integrate the models into a real-life scenario. In image
classification tasks, convolutional neural networks usually perform the best, but other
machine learning algorithms are able to deliver acceptable results too. Conventional
models that use images for disease identification are based on computer vision algorithms
and have many limitations. Different light conditions, shadows and other external factors
cause problems and make these models often return incorrect results. Machine learning is
able to overcome these problems by learning from these special cases. Also, conventional
models use only a few images for testing, i.e. they don’t generalize very well. Models
focus too often on the color, in order to identify a disease, which doesn’t necessarily
indicate the presence of a disease. Models should also verify the shape of the plants.
Some diseases are easier to detect, because of their simpler patterns.
Conventional models that use weather data for disease identification are defined by
manually deriving a formula from historical data, while the AI models are able to learn
from the data automatically. AI models are more suitable for integration into real
applications.

Chapter 1 gives an overview about the thesis and the motivation behind it. It defines the
problem and the methodology as well. Chapter 2 provides the required knowledge. In
Chapter 3, similar work is researched. Chapter 4 identifies model types and conventional
plant/pest disease identification models. In Chapter 5, AI models are defined. A
prototype is implemented and used to evaluate the AI models, described in Chapter 6.
In Chapter 7, conventional and AI models are compared. This chapter concludes this
work and discusses its limitations, but also the future.

8.2 Limitations
Both, the models and the tool have their limitations. Work must be carried out to
improve them. The following shortcomings arise:

• all the models distinguish between healthy and diseased plants. However, they
only check for one particular disease. They should be extended to identify different
diseases, not only one. This limitation is related to the unavailability of the data

• more data sets are needed. Currently, only the PlantVillage data set[HS15] looks to
satisfy requirements, regarding size and diversity. Data sets, which consist only of
a few samples, are more theoretic. Therefore, plant disease data sets with thermal
images, pest images, remote sensing images and weather data are needed

• all plants are considered equally susceptible to a disease. For all data sets, external
factors need to be considered as well, for instance, whether pesticides were applied
or not. They might have an impact, especially on the models that predict diseases.
This is the case for models that use weather data as an input

92

8.3. Future work

• the quality of the images needs to be higher. This is the case for satellite images.
The more detailed they are, the more features will be learned. AI techniques could
be applied to improve the quality of the images too

• the performance of the models that use images as an input depends on the size
of the images. Resizing images, or applying other transformations, might make
the models run faster. Especially, support-vector machine models have a large size,
which has to be reduced

• model types are described in an informal way, not constraining the implemented
models

• the usability of PDIS can be improved. Especially, showing better error messages
is important, since they can give information about failing model builds. Also, the
way data set files are passed around should be improved. Currently, it is expected
that the data sets are available on the server side. Instead, users should be able to
send data from their machines, through the browser. Also, model builds cannot be
stopped

8.3 Future work
This thesis provides a good basis for future work:

• only supervised learning models are used. Unsupervised learning algorithms should
be applied as well for plant disease identification

• models that are able to assess the severity of a specific disease should be developed

• different models can be combined. For instance, a composite model can be built,
which uses a combination of weather data and close range images to identify diseases

• in Chapter 4, some model types are briefly mentioned. These include model types
that use morphological data of plants over time, fluorescence imaging, hyperspectral
imaging, and spectroscopy. For all these model types, models should be implemented
too. The first step would be acquiring the necessary data

• the models should be able to identify where the disease occurs

• a monitoring tool should be developed, which focuses more on the automation
part of plant disease identification. For monitoring, drones or cameras at fixed
positions can be used. These will continuously interact with PDIS. They will use it
to predict/identify diseases, and if it is the case, the tool should warn the farmers
about this event. Depending on the event, pesticides could be automatically applied
too

93

8. Conclusion

Protecting the global food supply is not an easy task. Preventing plant disease outbreaks
is important for an efficient production. In order to achieve this, the process of disease
identification should be automated in the future. This will be possible by applying
identification and monitoring tools that are able to work in an independent way.

94

APPENDIX A
Code listings and tables

This appendix contains code listings that are used throughout this thesis. Tables that
describe the endpoints are included as well.

A.1 Description of data types
This section describes the data types that are used by the modules of PDIS.
{

" $ id " : " https : / / com . enrimiho . p d i s / config_schema . j s o n " ,
" $schema " : " https : / / json −schema . org / d r a f t /2020−12/schema " ,
" d e s c r i p t i o n " : " D e s c r i p t i o n o f the PDIS c o n f i g " ,
" type " : " o b j e c t " ,
" p r o p e r t i e s " : {

" modelTypes " : { " type " : " array " , " i tems " : { " $ r e f " : " f i l e : model_type_schema . j s o n " }
} ,

" models " : { " type " : " array " , " i tems " : { " $ r e f " : " f i l e : model_schema . j s o n " } }
}

}

Listing A.1: config_schema.json

{
" $ id " : " https : / / com . enrimiho . p d i s /model_type_schema . j s o n " ,
" $schema " : " https : / / json −schema . org / d r a f t /2020−12/schema " ,
" d e s c r i p t i o n " : " D e s c r i p t i o n o f the model type " ,
" type " : " o b j e c t " ,
" r e q u i r e d " : [" id " , " name " , " d e s c r i p t i o n "] ,
" p r o p e r t i e s " : {

" id " : { " type " : " number " , " d e s c r i p t i o n " : " Must be unique " } ,
" name " : { " type " : " s t r i n g " } ,
" d e s c r i p t i o n " : { " type " : " s t r i n g " }

}
}

Listing A.2: model_type_schema.json

{
" $ id " : " https : / / com . enrimiho . p d i s /model_schema . j s o n " ,
" $schema " : " https : / / json −schema . org / d r a f t /2020−12/schema " ,

95

A. Code listings and tables

" d e s c r i p t i o n " : " D e s c r i p t i o n o f the model " ,
" type " : " o b j e c t " ,
" r e q u i r e d " : [" id " , " modelTypeId " , " name " , " implementation " , " p lant " , " d i s e a s e " , "

s e t t i n g s "] ,
" p r o p e r t i e s " : {

" id " : { " type " : " number " , " d e s c r i p t i o n " : " Must be unique , a l s o a c r o s s a l l model
types " } ,

" modelTypeId " : { " type " : " number " , " d e s c r i p t i o n " : " Must r e f e r to an e x i s t i n g model
type " } ,

" name " : { " type " : " s t r i n g " } ,
" implementation " : { " type " : " s t r i n g " , " d e s c r i p t i o n " : " Path to model b u i l d e r and

e v a l u a t o r " } ,
" p lant " : { " type " : " s t r i n g " } ,
" d i s e a s e " : { " type " : " s t r i n g " } ,
" s e t t i n g s " : { " type " : " array " , " i tems " : { " $ r e f " : " f i l e : sett ings_schema . j s o n " } }

}
}

Listing A.3: model_schema.json

{
" $ id " : " https : / / com . enrimiho . p d i s / sett ings_schema . j s o n " ,
" $schema " : " https : / / json −schema . org / d r a f t /2020−12/schema " ,
" d e s c r i p t i o n " : " Allows to c o n f i g u r e s e t t i n g s f o r a model and a l s o how the u ser

i n t e r f a c e should render them " ,
" type " : " o b j e c t " ,
" r e q u i r e d " : [" id " , " type " , " t i t l e " , " va lue "] ,
" p r o p e r t i e s " : {

" id " : { " type " : " number " , " d e s c r i p t i o n " : " Must be unique in a model or l i s t " } ,
" type " : {

" type " : " s t r i n g " ,
"enum " : ["INPUT" , "OPTIONS" , "OPTION"] ,
" d e s c r i p t i o n " : "INPUT should render as a t e x t f i e l d , OPTIONS as a drop down (with

p o s s i b l e v a l u e s d e f i n e d in o p t i o n s a t t r i b u t e) , OPTION as a checkbox "
} ,
" name " : { " type " : " s t r i n g " } ,
" va lue " : {" type " : [" number " , " s t r i n g " , " boolean "] , " d e s c r i p t i o n " : " Represents the

value o f a s e t t i n g " } ,
" o p t i o n s " : {

" type " : " array " ,
" i tems " : { " type " : " s t r i n g " } ,
" d e s c r i p t i o n " : " The p o s s i b l e v a l u e s f o r the OPTIONS s e t t i n g type "

}
}

}

Listing A.4: settings_schema.json

{
" $ id " : " https : / / com . enrimiho . p d i s / build_result_schema . j s o n " ,
" $schema " : " https : / / json −schema . org / d r a f t /2020−12/schema " ,
" d e s c r i p t i o n " : "A r e p r e s e n t a t i o n o f a b u i l d and e v a l u a t i o n r e s u l t " ,
" type " : " o b j e c t " ,
" r e q u i r e d " : [" buildTime " , " evaluationTime " , " c l a s s i f i c a t i o n R e p o r t " , "

c r o s s V a l i d a t i o n R e p o r t s " , " l a b e l s "] ,
" p r o p e r t i e s " : {

" buildTime " : { " type " : " number " } ,
" evaluationTime " : { " type " : " number " } ,
" l a b e l s " : { " type " : " array " , " i tems " : { " type " : " s t r i n g " }
} ,
" c l a s s i f i c a t i o n R e p o r t " : { " $ r e f " : "#/ $ d e f s / c l a s s i f i c a t i o n R e p o r t " } ,
" c r o s s V a l i d a t i o n R e p o r t s " : {" type " : " array " , " i tems " : { " $ r e f " : "#/ $ d e f s /

c r o s s V a l i d a t i o n R e p o r t " }}
} ,
" $ d e f s " : {

" c l a s s i f i c a t i o n R e p o r t " : {
" r e q u i r e d " : [" accuracy " , " c l a s s R e p o r t s " , " confus ionMatr ix "] ,
" p r o p e r t i e s " : {

" accuracy " : { " type " : " number " } ,
" confus ionMatr ix " : {" type " : " array " , " i tems " : {" type " : " array " , " i tems " : {"

type " : " number "} } } ,

96

A.1. Description of data types

" c l a s s R e p o r t s " : { " type " : " array " , " i tems " : { " $ r e f " : "#/ $ d e f s / c l a s s R e p o r t " }
}

}
} ,
" c l a s s R e p o r t " : {

" r e q u i r e d " : [" l a b e l I d " , " p r e c i s i o n " , " r e c a l l " , " f 1 "] ,
" p r o p e r t i e s " : {

" l a b e l I d " : {" type " : " number " } ,
" p r e c i s i o n " : {" type " : " number " } ,
" r e c a l l " : {" type " : " number " } ,
" f 1 " : {" type " : " number " } ,
" p r e c i s i o n R e c a l l C u r v e " : { " $ r e f " : "#/ $ d e f s / p r e c i s i o n R e c a l l C u r v e " } ,
" rocCurve " : { " $ r e f " : "#/ $ d e f s / rocReca l lCurve " }

}
} ,
" c r o s s V a l i d a t i o n R e p o r t " : {

" r e q u i r e d " : [" accuracy " , " confus ionMatr ix " , " c l a s s R e p o r t s "] ,
" p r o p e r t i e s " : {

" accuracy " : { " type " : " number " } ,
" confus ionMatr ix " : {" type " : " array " , " i tems " : {" type " : " array " , " i tems " : {"

type " : " number "} } } ,
" c l a s s R e p o r t s " : { " type " : " array " , " i tems " : { " $ r e f " : "#/ $ d e f s / c l a s s R e p o r t " }

}
}

} ,
" p r e c i s i o n R e c a l l C u r v e " : {

" r e q u i r e d " : [" p r e c i s i o n s " , " r e c a l l s " , " t h r e s h o l d s "] ,
" p r o p e r t i e s " : {

" p r e c i s i o n s " : {" type " : " array " , " i tems " : {" type " : " number "}} ,
" r e c a l l s " : {" type " : " array " , " i tems " : {" type " : " number "}} ,
" t h r e s h o l d s " : {" type " : " array " , " i tems " : {" type " : " number "}}

}
} ,
" rocReca l lCurve " : {

" r e q u i r e d " : [" f p r " , " tpr " , " t h r e s h o l d s "] ,
" p r o p e r t i e s " : {

" f p r " : {" type " : " array " , " i tems " : {" type " : " number "}} ,
" tpr " : {" type " : " array " , " i tems " : {" type " : " number "}} ,
" t h r e s h o l d s " : {" type " : " array " , " i tems " : {" type " : " number "}}

}
}

}
}

Listing A.5: build_result_schema.json

{
" $ id " : " https : / / com . enrimiho . p d i s / p r e d i c t i o n . schema . j s o n " ,
" $schema " : " https : / / json −schema . org / d r a f t /2020−12/schema " ,
" d e s c r i p t i o n " : "A r e p r e s e n t a t i o n o f a c l a s s i f i c a t i o n p r e d i c t i o n " ,
" type " : " o b j e c t " ,
" r e q u i r e d " : [" p r e d i c t i o n " , " l a b e l s "] ,
" p r o p e r t i e s " : {

" p r e d i c t i o n " : { " type " : " number " } ,
" l a b e l s " : { " type " : " array " , " i tems " : { " type " : " s t r i n g " } ,
" featureMap " : {" type " : " s t r i n g "}
}

}
}

Listing A.6: prediction_result_schema.json

{
" $ id " : " https : / / com . enrimiho . p d i s /model_build_schema . j s o n " ,
" $schema " : " https : / / json −schema . org / d r a f t /2020−12/schema " ,
" d e s c r i p t i o n " : "A r e p r e s e n t a t i o n o f model b u i l d " ,
" type " : " o b j e c t " ,
" r e q u i r e d " : [" id " , " model " , " buildTimestamp " , " s t a t e "] ,
" p r o p e r t i e s " : {

" id " : { " type " : " number " } ,
" buildTimestamp " : { " type " : " number " } ,

97

A. Code listings and tables

" s t a t e " : { " type " : " s t r i n g " , "enum " : [" FINISHED_SUCCESS" , "FINISHED_FAILED" , "
RUNNING"] } ,

" model " : { " $ r e f " : " f i l e : model_schema . j s o n " } ,
" r e s u l t " : { " $ r e f " : " f i l e : bui ld_result_schema . j s o n " }

}
}

Listing A.7: model_build_schema.json

A.2 Code listings for implementing a new model
c l a s s L o g i s t i c R e g r e s s i o n M o d e l :

. . .

de f f i t (s e l f , x_train , y_train) :
f i t model to the data

de f p r e d i c t _ f i l e (s e l f , f i l e) :
r e t u r n s p r e d i c t i o n

de f b u i l d _ l o g i s t i c _ r e g r e s s i o n _ m o d e l (s e t t i n g s) :
load data s e t from the s e t t i n g s
data = load_data_set (s e t t i n g s)

s o l v e r = s e t t i n g s [2] [’ value ’]
model = L o g i s t i c R e g r e s s i o n M o d e l (s o l v e r=s o l v e r , . . .)

run_cross_val idat ion = s e t t i n g s [3] [’ value ’]
c r o s s _ v a l i d a t i o n _ r e p o r t s = []
o p t i o n a l l y perform c r o s s −v a l i d a t i o n
i f run_cross_val idat ion :

c r o s s _ v a l i d a t i o n _ r e p o r t s = c r o s s _ v a l i d a t i o n (model , data . t r a i n i n g , . . .)

b u i l d model
model . f i t (data . t r a i n i n g)

e v a l u a t i o n
r e p o r t = t o _ c l a s s i f i c a t i o n _ r e p o r t (model , data . t e s t , . . .)

r e s u l t = {
" buildTime " : . . . ,
" evaluationTime " : . . . ,
" c l a s s i f i c a t i o n R e p o r t " : report ,
’ c r o s s V a l i d a t i o n R e p o r t s ’ : c r o s s _ v a l i d a t i o n _ r e p o r t s ,
’ l a b e l s ’ : [" tomato_healthy " , " tomato_late_blight "] ,

}
r e t u r n r e s u l t , model

Listing A.8: logistic_regression.py

{" modelTypes " : [
{ " id " : 1 ,

" name " : " Close−range images model type " ,
" d e s c r i p t i o n " : " D e s c r i p t i o n o f the model type "

}
] ,
" models " : [

{ " id " : 1 ,
" modelTypeId " : 1 ,
" name " : " Tomato l a t e b l i g h t l o g i s t i c r e g r e s s i o n model " ,
" implementation " : " close_range_images . l o g i s t i c _ r e g r e s s i o n .

b u i l d _ l o g i s t i c _ r e g r e s s i o n _ m o d e l " ,
" p lant " : " Tomato " ,
" d i s e a s e " : " Late B l i g h t " ,
" s e t t i n g s " : [

{" id " : 1 , " type " : "INPUT" , " t i t l e " : " Healthy Leaves Images Locat ion " , " va lue " :
"/ media/ user / Storage /ML/ P l a n t V i l l a g e −Dataset /raw/ c o l o r /Tomato___healthy " } ,

98

A.2. Code listings for implementing a new model

{" id " : 2 , " type " : "INPUT" , " t i t l e " : " Diseased Leaves Images Locat ion " , " va lue " :
"/ media/ u ser / Storage /ML/ P l a n t V i l l a g e −Dataset /raw/ c o l o r /

Tomato___Late_blight " } ,
{" id " : 3 , " type " : "OPTIONS" , " t i t l e " : " S o l v e r " , " va lue " : " l b f g s " , " o p t i o n s " : ["

l b f g s " , " sag " , " saga "] } ,
{" id " : 4 , " type " : "OPTION" , " t i t l e " : "Run Cross−v a l i d a t i o n " , " va lue " : f a l s e }

]
}

]
}

Listing A.9: example_config.json

POST http : / / l o c a l h o s t :8000/ api / models / b u i l d s

BODY
{

" id " : 1 ,
" modelTypeId " : 1 ,
" name " : " Tomato l a t e b l i g h t l o g i s t i c r e g r e s s i o n model " ,
" s e t t i n g s " : [

{
" id " : 1 ,
" t i t l e " : " Healthy Leaves Images Locat ion " ,
" type " : "INPUT" ,
" value " : "/ media/ u ser / Storage /ML/ P l a n t V i l l a g e −Dataset /raw/ c o l o r /Tomato___healthy "

} ,
{

" id " : 2 ,
" t i t l e " : " Diseased Leaves Images Locat ion " ,
" type " : "INPUT" ,
" value " : "/ media/ u ser / Storage /ML/ P l a n t V i l l a g e −Dataset /raw/ c o l o r /

Tomato___Late_blight "
} ,
{

" id " : 3 ,
" o p t i o n s " : [

" l b f g s " ,
" sag " ,
" saga "

] ,
" t i t l e " : " S o l v e r " ,
" type " : "OPTIONS" ,
" va lue " : " l b f g s "

} ,
{

" id " : 4 ,
" t i t l e " : "Run Cross−v a l i d a t i o n " ,
" type " : "OPTION" ,
" value " : f a l s e

}
]

}

RESPONSE
{

" id " : 1 ,
" model " : {

" id " : 1 ,
" modelTypeId " : 1 ,
" name " : " Tomato l a t e b l i g h t l o g i s t i c r e g r e s s i o n model " ,
" s e t t i n g s " : [

{
" id " : 1 ,
" t i t l e " : " Healthy Leaves Images Locat ion " ,
" type " : "INPUT" ,
" value " : "/ media/ u ser / Storage /ML/ P l a n t V i l l a g e −Dataset /raw/ c o l o r /

Tomato___healthy "
} ,
{

" id " : 2 ,
" t i t l e " : " Diseased Leaves Images Locat ion " ,

99

A. Code listings and tables

" type " : "INPUT" ,
" value " : "/ media/ u ser / Storage /ML/ P l a n t V i l l a g e −Dataset /raw/ c o l o r /

Tomato___Late_blight "
} ,
{

" id " : 3 ,
" o p t i o n s " : [

" l b f g s " ,
" sag " ,
" saga "

] ,
" t i t l e " : " S o l v e r " ,
" type " : "OPTIONS" ,
" va lue " : " l b f g s "

} ,
{

" id " : 4 ,
" t i t l e " : "Run Cross−v a l i d a t i o n " ,
" type " : "OPTION" ,
" value " : f a l s e

}
]

} ,
" buildTimestamp " : 1619197878167 ,
" s t a t e " : "RUNNING"

}

Listing A.10: Example request to build a new model.

GET http : / / l o c a l h o s t :8000/ api / models / b u i l d s /1

RESPONSE
{

" id " : 1 ,
" model " : {

" id " : 1 ,
" modelTypeId " : 1 ,
" name " : " L o g i s t i c R e g r e s s i o n " ,
" s e t t i n g s " : [

{
" id " : 1 ,
" t i t l e " : " Healthy Leaves Images Locat ion " ,
" type " : "INPUT" ,
" value " : "/ media/ u ser / Storage /ML/ P l a n t V i l l a g e −Dataset /raw/ c o l o r /

Tomato___healthy "
} ,
{

" id " : 2 ,
" t i t l e " : " Diseased Leaves Images Locat ion " ,
" type " : "INPUT" ,
" value " : "/ media/ u ser / Storage /ML/ P l a n t V i l l a g e −Dataset /raw/ c o l o r /

Tomato___Late_blight "
} ,
{

" id " : 3 ,
" o p t i o n s " : [

" l b f g s " ,
" sag " ,
" saga "

] ,
" t i t l e " : " S o l v e r " ,
" type " : "OPTIONS" ,
" va lue " : " l b f g s "

} ,
{

" id " : 4 ,
" t i t l e " : "Run Cross−v a l i d a t i o n " ,
" type " : "OPTION" ,
" value " : f a l s e

}
]

} ,

100

A.3. Endpoint descriptions

" buildTimestamp " : 1619197878167 ,
" s t a t e " : "FINISHED_SUCCESS" ,
" r e s u l t " : {

" buildTime " : 2 7 0 . 9 7 ,
" evaluationTime " : 3 . 2 1 ,
" c l a s s i f i c a t i o n R e p o r t " : {

" accuracy " : 0 . 9 1 7 5 ,
" c l a s s R e p o r t s " : [

{
" l a b e l I d " : 0 ,
" p r e c i s i o n " : 0 . 9 ,
" r e c a l l " : 0 . 9 ,
" f 1 " : 0 . 9 1

} ,
{

" l a b e l I d " : 1 ,
" p r e c i s i o n " : 0 . 9 4 ,
" r e c a l l " : 0 . 9 4 ,
" f 1 " : 0 . 9 2

}
]

} ,
" c r o s s V a l i d a t i o n R e p o r t s " : [] ,
" l a b e l s " : [

" tomato_healthy " ,
" tomato_late_bl ight "

]
}

}

Listing A.11: Example of getting a finished model build.

POST http : / / l o c a l h o s t :8000/ api / models / b u i l d s /1/ p r e d i c t i o n

BODY
−−−−−−WebKitFormBoundaryQju2spf0GON5GuyG
Content−D i s p o s i t i o n : form−data ; name=" j s o n " ; f i l e n a m e ="blob "
Content−Type : a p p l i c a t i o n / j s o n

{"name " : " f c e 9 c c 3 f −88ab−46d6−a26f−c6ff0e7c56e7___RS_Late .B 6372 .JPG" , " mimeType " : " image /
jpeg "}

−−−−−−WebKitFormBoundaryQju2spf0GON5GuyG
Content−D i s p o s i t i o n : form−data ; name="attachment " ; f i l e n a m e =" f c e 9 c c 3 f −88ab−46d6−a26f−

c6ff0e7c56e7___RS_Late .B 6372 .JPG"
Content−Type : image / jpeg

−−−−−−WebKitFormBoundaryQju2spf0GON5GuyG−−

RESPONSE
{

" p r e d i c t i o n " : 1 ,
" l a b e l s " : [

" tomato_healthy " ,
" tomato_late_bl ight "

]
}

Listing A.12: Example of classifying a file object.

A.3 Endpoint descriptions

101

A. Code listings and tables

Endpoint Type Parameters Body Response
/config GET Returns the configu-

ration(Listing A.1)
/model-builds POST modelId,

model-
TypeId,
callback

settings
(List-
ing A.4)

Builds a new model
with the given set-
tings and sends the
serialized model,
including the build
and evaluation re-
sults, back to the
caller, using the
callback endpoint.
For a structure of the
callback endpoint,
see the description of
it in Table A.2

/model-builds/prediction POST model
file, file
object

Classifies a file
object using the
model file. Invokes
predict_file
on the model and
returns the predic-
tion(Listing A.6)

Table A.1: Description of the endpoints, exposed by the models module.

102

A.3. Endpoint descriptions

Endpoint Type Parameters Body Response
/model-types GET Returns a list

of model types,
loaded from
the configura-
tion(Listing A.2)

/models GET modelTypeId Returns a list of
models, loaded
from the con-
figuration (List-
ing A.3), filtered
by modelTypeId,
if available

/models/builds POST model (List-
ing A.3)

Returns a new
model build (List-
ing A.7)

/models/builds GET Returns a
list of model
builds(Listing A.7)

/models/builds/{id} POST build result,
model file

Updates the
model build for
the given id with
the provided
build result (List-
ing A.5) and
persists the model
file. This is the
callback endpoint
that is invoked
by the models
module

/models/builds/{id} GET Returns the model
build for the given
id(Listing A.7)

/models/builds/{id}/prediction POST file object Loads the model
build with the
given id and
returns the pre-
diction result
for a file ob-
ject(Listing A.6)

Table A.2: Description of the endpoints, exposed by the core module.

103

APPENDIX B
Supplementary materials: source
code of PDIS, models, and data

sets

The file pdis.zip contains the source code of PDIS, including the data sets. Following
data sets are available:

• the tomato late blight data set, available under
/datasets/tomato-late-blight-dataset. It contains healthy images of
tomato leaves and images of leaves that are infected with tomato late blight disease,
from the PlantVillage data set[HS15]

• the corn northern leaf blight data set, available under
/datasets/corn-northern-leaf-blight-dataset. It contains healthy
images of corn leaves and images of leaves that are infected with corn northern leaf
blight disease, from the PlantVillage data set[HS15]

• the cucumber thermal leaf images data set, available under
/datasets/cucumber-thermal-leaf-images-dataset. Wang at al.[WLD+12]
published six thermographic images of healthy cucumber leaves, and also another
six images, which show cucumber leaves that are infected with Fusarium wilt. These
images are part of this data set

• the rice remote sensing data set, available under
/datasets/rice-remote-sensing-dataset. It contains images of a rice
cultivars. They are extracted from 2 images of rice fields, provided by Zhang et
al.[ZZZ+18]. Images show rice cultivars with a low, medium and high risk of sheath
blight

105

B. Supplementary materials: source code of PDIS, models, and data sets

• the wheat weather data set, available under
/datasets/wheat-weather-dataset. Contains weather data and assess-
ments regarding wheat stripe rust disease. The data is provided by Jarroudi
et al.[JLK+20]

• the whiteflies data set, available under /datasets/whiteflies-dataset. It
contains images of healthy leaves, randomly selected from the PlantVillage data
set[HS15]. Images of whiteflies on leaves are manually collected from the internet

The following model implementations can be found:

• models/src/models/tomato_late_blight_lr_model.py

• models/src/models/tomato_late_blight_svm_model.py

• models/src/models/tomato_late_blight_cnn_model.py

• models/src/models/wheat_stripe_rust_lr_model.py

• models/src/models/corn_northern_leaf_blight_lr_model.py

• models/src/models/corn_northern_leaf_blight_svm_model.py

• models/src/models/corn_northern_leaf_blight_cnn_model.py

• models/src/models/cucumber_fusarium_wilt_lr_model.py

• models/src/models/cucumber_fusarium_wilt_cnn_model.py

• models/src/models/rice_sheath_blight_cnn_model.py

• models/src/models/whiteflies_cnn_model.py

106

List of Figures

1.1 The methodological approach. 4

2.1 Black rot on a grape leaf[HS15]. 8
2.2 Artificial Intelligence and its subsets. 9
2.3 Linear regression for a data set with one feature. 11
2.4 Overfitting and underfitting. 12
2.5 An artificial neuron. 15
2.6 An artificial neural network with three layers. 16

4.1 A plant disease model type is an abstract function that identifies/predicts a
plant disease (severity), given some input data. 26

4.2 Segmented (a) and grayscale (b) images of late blight in tomato leaves, from
the PlantVillage data set[HS15]. 28

4.3 Thermographic image of apple scab in a leaf. The red spots indicate infected
areas with a higher temperature[GVG+17]. 30

4.4 Rice field with sheath blight[ZZZ+18]. Infected tissue has yellow to brown
color. 35

4.5 Whiteflies occupying a leaf[BM13]. 35

5.1 Tomato late blight convolutional neural network model. 44
5.2 Corn northern leaf blight convolutional neural network model. 50
5.3 Cucumber Fusarium wilt convolutional neural network model. 53
5.4 The rice sheath blight convolutional neural network model. 55
5.5 The chlorosis convolutional neural network model. 58

6.1 High-level description of PDIS. 63
6.2 Curves for tomato late blight logistic regression model, blue stands for the

healthy class and green for the late blight class. 67
6.3 Feature map of a tomato leaf infected with late blight. 69
6.4 Curves for corn northern leaf blight logistic regression model, blue stands for

the healthy class and green for the northern leaf blight class. 72
6.5 Curves for the cucumber Fusarium wilt logistic regression model, blue stands

for the healthy class and green for the diseased class. 74
6.6 Feature map for an infected cucumber leaf in its early infection stage. . . 75
6.7 Feature map for a rice canopy, infected with sheath blight. 76

107

6.8 Feature map for a leaf with whiteflies. 78

108

List of Tables

4.1 Summary of the conventional models. The disease column indicates the disease
of interest during comparison with the AI models. 36

5.1 Description of the features of the constructed data set. 45
5.2 Summary of AI models. 59

6.1 Confusion matrix for tomato late blight logistic regression model. 66
6.2 Class specific metrics for tomato late blight logistic regression model. . . . 66
6.3 Results for tomato late blight logistic regression model. 66
6.4 Results for tomato late blight support-vector machine model. 68
6.5 Confusion matrix for tomato late blight support-vector machine model. . 68
6.6 Class specific metrics for tomato late blight support-vector machine model. 68
6.7 Results for tomato late blight convolutional neural network model. 68
6.8 Confusion matrix for tomato late blight convolutional neural network model. 69
6.9 Class specific metrics for tomato late blight convolutional neural network

model. 69
6.10 The odds for the low risk class of the logistic regression model. 70
6.11 Results for wheat stripe rust logistic regression model. 70
6.12 Confusion matrix for wheat stripe rust logistic regression model. 70
6.13 Class specific metrics for wheat stripe rust logistic regression model. 71
6.14 Results for corn northern leaf blight logistic regression model. 71
6.15 Confusion matrix for corn northern leaf blight logistic regression model. . . 71
6.16 Class specific metrics for corn northern leaf blight logistic regression model. 71
6.17 Results for corn northern leaf blight support-vector machine model. . . . 72
6.18 Confusion matrix for corn northern leaf blight support-vector machine model. 72
6.19 Class specific metrics for corn northern leaf blight support-vector machine

model. 72
6.20 Results for corn northern leaf blight convolutional neural network model. 73
6.21 Confusion matrix for corn northern leaf blight convolutional neural network

model. 73
6.22 Class specific metrics for corn northern leaf blight convolutional neural network

model. 73
6.23 Results for cucumber Fusarium wilt logistic regression model. 73
6.24 Confusion matrix for cucumber Fusarium wilt logistic regression model. . 73

109

6.25 Class specific metrics for cucumber Fusarium wilt logistic regression model. 74
6.26 Results for cucumber Fusarium wilt convolutional neural network model. 75
6.27 Confusion matrix for cucumber Fusarium wilt convolutional neural network

model. 75
6.28 Class specific metrics for cucumber Fusarium wilt convolutional neural network

model. 75
6.29 Results for rice sheath blight convolutional neural network model. 76
6.30 Confusion matrix for rice sheath blight convolutional neural network model. 76
6.31 Class specific metrics for rice sheath blight convolutional neural network

model. 76
6.32 Results for the chlorosis convolutional neural network model. 77
6.33 Confusion matrix for the chlorosis convolutional neural network model. . 77
6.34 Class specific metrics for the chlorosis convolutional neural network model. 77
6.35 Summary of evaluation results. Times are in minutes, sizes in MB. 79

7.1 Summary of comparison results. The AI models require more computation
time, but generalize better and can be used in agriculture. 89

A.1 Description of the endpoints, exposed by the models module. 102
A.2 Description of the endpoints, exposed by the core module. 103

110

Acronyms

AI Artificial Intelligence. 2–5, 7, 9, 19–23, 25, 27, 31, 32, 35–38, 51, 54, 59, 63, 65, 66,
71, 77, 81, 83–86, 88, 89, 91–93, 109, 110

API Application Programming Interface. 61, 64, 91

CPU central processing unit. 66, 84

FN false negatives. 61

FP false positives. 61

GAN Generative Adversarial Network, a framework that can be used for data augmen-
tation. 39, 40, 46–48

GPS Global Positioning System. 8

GPU graphics processing unit. 66

HSI hue, saturation, intensity - an alternative color model to RGB. 33

HSL hue, saturation, lightness - an alternative color model to RGB. 53, 54

HSV hue, saturation, value - an alternative color model to RGB. 33–35, 57

HTTP Hypertext Transfer Protocol. 64

IoT Internet of Things. 3

JSON JavaScript Object Notation. 64

NDVI Normalized Difference Vegetation Index. 85, 86

PDIS Plant Disease Identification System. 63, 64, 93, 105, 107

RAM random-access memory. 66

111

RGB red, green, blue - an additive color model. 17, 27, 28, 33–35, 42, 43, 48, 51, 53, 56,
57, 85, 111, 112

ROC Receiver operating characteristic. 62, 67, 72–74

SSD solid-state drive. 66

TN true negatives. 61

TP true positives. 61

YIQ an alternative color model to RGB, Y represents the perceived luminance and I
and Q the luminance information. Is is used by the NTSC color TV system. 33, 35

112

Bibliography

[Alp14] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2014.

[Bar13] Jayme Barbedo. Automatic method for counting and measuring whiteflies
in soybean leaves using digital image processing. 10 2013.

[Bar20] Jayme Barbedo. Detecting and classifying pests in crops using proximal
images and machine learning: A review. AI, 1:312–328, 06 2020.

[BB07] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning.
volume 20, 01 2007.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[BM13] T.S. Bodhe and P. Mukherji. Selection of color space for image segmentation
in pest detection. pages 1–7, 01 2013.

[Cra02] J.S. Cramer. The origins of logistic regression. Tinbergen Institute, Tinber-
gen Institute Discussion Papers, 01 2002.

[CS09] Anyela Camargo and Jeremy Smith. An image-processing based algo-
rithm to automatically identify plant disease visual symptoms. Biosystems
Engineering - BIOSYST ENG, 102:9–21, 01 2009.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach.
Learn., 20(3):273–297, sep 1995.

[DBLJ14] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incre-
mental gradient method with support for non-strongly convex composite
objectives, 2014.

[ESJT17] Mosbah El Sghair, Raka Jovanovic, and Milan Tuba. An algorithm for
plant diseases detection based on color features. International Journal of
Agricultural Science, 2, 2017.

[FNJ19] Per Frankelius, Charlotte Norrman, and Knut Johansen. Agricultural
innovation and the role of institutions: Lessons from the game of drones.
Journal of Agricultural and Environmental Ethics, 32:681–707, 11 2019.

113

[Fre05] David Freedman. Statistical Models : Theory and Practice, page 26. Cam-
bridge University Press, August 2005.

[FRJ86] J. Fussell, Donald Rundquist, and John Jr. On defining remote sensing.
52:1507–1511, 01 1986.

[GBC+10] H. Charles J. Godfray, John R. Beddington, Ian R. Crute, Lawrence Haddad,
David Lawrence, James F. Muir, Jules Pretty, Sherman Robinson, Sandy M.
Thomas, and Camilla Toulmin. Food security: The challenge of feeding 9
billion people. Science, 327(5967):812–818, 2010.

[GPAM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Genera-
tive adversarial networks, 2014.

[Gre14] Prof Grewal. A critical conceptual analysis of definitions of artificial intelli-
gence as applicable to computer engineering. IOSR Journal of Computer
Engineering, 16:09–13, 01 2014.

[GVG+17] Nathalie Gorretta, Pierre Vaysse, Michel Giraud, Christian Germain, Barna
Keresztes, and Jean-Michel Roger. Near infrared hyperspectral dataset
of healthy and infected apple tree leaves images for the early detection of
apple scab disease. Data in Brief, 16, 12 2017.

[HK00] Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estima-
tion for nonorthogonal problems. Technometrics, 42:80 – 86, 2000.

[HS15] David Hughes and Marcel Salathe. An open access repository of images
on plant health to enable the development of mobile disease diagnostics
through machine learning and crowdsourcing. 11 2015.

[IJM+20] S. Iniyan, R. Jebakumar, P. Mangalraj, Mayank Mohit, and Aroop Nanda.
Plant disease identification and detection using support vector machines
and artificial neural networks. In Subhransu Sekhar Dash, C. Lakshmi,
Swagatam Das, and Bijaya Ketan Panigrahi, editors, Artificial Intelli-
gence and Evolutionary Computations in Engineering Systems, pages 15–27,
Singapore, 2020. Springer Singapore.

[Isl18] Waqar Islam. Plant disease epidemiology: Disease triangle and forecasting
mechanisms in highlights. 5, 02 2018.

[JAT17] Sarah Jasim and Ali Al-Taei. A comparison between svm and k-nn for
classification of plant diseases. Diyala Journal for Pure Science, 01 2017.

[JLK+20] Moussa Jarroudi, Rachid Lahlali, Louis Kouadio, Antoine Denis, Alexandre
Belleflamme, Mustapha El Jarroudi, Mohammed Boulif, H. Mahyou, and
Bernard Tychon. Weather-based predictive modeling of wheat stripe rust
infection in morocco. 02 2020.

114

[Joh07] D. Johnson. Proximity sensors. 54:92–97, 07 2007.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014.

[KHI+19] Ahmed Khattab, Serag Habib, Haythem Ismail, Sahar Zayan, Yasmine
Fahmy, and M.M. Khairy. An iot-based cognitive monitoring system for
early plant disease forecast. Computers and Electronics in Agriculture,
166:105028, 11 2019.

[KLM96] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Re-
inforcement learning: A survey. J. Artif. Int. Res., 4(1):237–285, may
1996.

[KPG18] Sukhvir Kaur, Shreelekha Pandey, and Shivani Goel. Plants disease iden-
tification and classification through leaf images: A survey. Archives of
Computational Methods in Engineering, 26, 01 2018.

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[LBH15] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436–44, 05 2015.

[Mah15] Anne-Katrin Mahlein. Plant disease detection by imaging sensors – parallels
and specific demands for precision agriculture and plant phenotyping. Plant
Disease, 100, 09 2015.

[MGI14] Johnny Miranda, Bobby Gerardo, and Bartolome Iii. Pest detection and
extraction using image processing techniques. International Journal of
Computer and Communication Engineering, 3:189–192, 01 2014.

[MSB+17] Mohammadmehdi Maharlooei, Saravanan Sivarajan, Sreekala Bajwa, Jason
Harmon, and John Nowatzki. Detection of soybean aphids in a green-
house using an image processing technique. Computers and Electronics in
Agriculture, 132:63–70, 01 2017.

[NAAZ20] Lawrence Ngugi, Moataz Abelwahab, and M. Abo-Zahhad. Recent ad-
vances in image processing techniques for automated leaf pest and disease
recognition - a review. Information Processing in Agriculture, 04 2020.

[Neg01] Michael Negnevitsky. Artificial Intelligence: A Guide to Intelligent Systems.
Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 2001.

[NJS+19] Koushik Nagasubramanian, Sarah Jones, Asheesh Singh, Soumik Sarkar,
Arti Singh, and Baskar Ganapathysubramanian. Plant disease identification
using explainable 3d deep learning on hyperspectral images. Plant Methods,
15, 12 2019.

115

[NS20] Harshita Nagar and R.S. Sharma. A comprehensive survey on pest detection
techniques using image processing. pages 43–48, 05 2020.

[OSDL06] E-C Oerke, U Steiner, H.-W Dehne, and M Lindenthal. Thermal imaging
of cucumber leaves affected by downy mildew and environmental conditions.
Journal of experimental botany, 57:2121–32, 02 2006.

[OSET18] Dor Oppenheim, Guy Shani, Orly Erlich, and Leah Tsror. Using deep
learning for image-based potato tuber disease detection. Phytopathology,
109, 12 2018.

[PCB20] Leidy Pamplona, Andres Calvo, and Arley Bejarano. Detection of foliar
diseases using image processing techniques. Revista Ceres, 67:100–110, 04
2020.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[PMS20] P. Prathusha, K. E. Srinivasa Murthy, and K. Srinivas. Plant disease
detection using machine learning algorithms. In S. Jyothi, D. M. Mamatha,
Suresh Chandra Satapathy, K. Srujan Raju, and Margarita N. Favorskaya,
editors, Advances in Computational and Bio-Engineering, pages 213–220,
Cham, 2020. Springer International Publishing.

[PP20] Gayatri Pattnaik and K. Parvathi. A Review on Advanced Techniques on
Plant Pest Detection and Classification, pages 665–673. 01 2020.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of machine learning research, 12(Oct):2825–2830, 2011.

[RAPSN20] Jonathan Rocha, Marcelo Alves, Edson Pozza, and Helon Santos Neto.
Detection of coffee berry necrosis by digital image processing of landsat 8
oli satellite imagery. International Journal of Applied Earth Observation
and Geoinformation, 85:101983, 03 2020.

[SA13] R. Sathya and Annamma Abraham. Comparison of supervised and unsuper-
vised learning algorithms for pattern classification. International Journal
of Advanced Research in Artificial Intelligence, 2, 02 2013.

116

[SAAB20] Muhammad Saleem, Babar Atta, Zulfiqar Ali, and Muhammad Bilal. Laser
induced fluorescence spectroscopy for early disease detection in grapefruit
plants. Photochemical & Photobiological Sciences, 19, 04 2020.

[Sam59] A. L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):210–229, 1959.

[SCZZ19] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization
methods from a machine learning perspective, 2019.

[SK19] Gurleen Sandhu and Rajbir Kaur. Plant disease detection techniques: A
review. pages 34–38, 04 2019.

[SMS20] Vikas Sharma, Aftab Mir, and Dr Sarwr. Detection of rice disease using
bayes’ classifier and minimum distance classifier. Journal of Multimedia
Information System, 7:17–24, 03 2020.

[SPDWM19] Denis Shah, Premila Paul, Erick De Wolf, and Laurence Madden. Predicting
plant disease epidemics from functionally represented weather series. Philo-
sophical transactions of the Royal Society of London. Series B, Biological
sciences, 374:20180273, 06 2019.

[Spe14] Sandro Sperandei. Understanding logistic regression analysis. Biochemia
medica, 24:12–8, 02 2014.

[SRB13] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums
with the stochastic average gradient, 2013.

[Ste97] Stephen Stehman. Selecting and interpreting measures of thematic classifi-
cation accuracy. Remote Sensing of Environment, 62:77–89, 10 1997.

[SVN20] K. S. Sankaran, N. Vasudevan, and V. Nagarajan. Plant disease detection
and recognition using k means clustering. In 2020 International Conference
on Communication and Signal Processing (ICCSP), pages 1406–1409, 2020.

[SVR+19] GOMEZ SM, Alejandro Vergara, Henry Ruiz, Nancy Safari, Sivalingam
Elayabalan, Walter Ocimati, and Guy Blomme. Ai-powered banana diseases
and pest detection. Plant Methods, 15, 12 2019.

[Swe86] John A. Swets. Indices of discrimination or diagnostic accuracy: their rocs
and implied models. Psychological bulletin, 99 1:100–17, 1986.

[TGL+13] Indi Trehan, Hayley Goldbach, Lacey LaGrone, Guthrie Meuli, Richard
Wang, Kenneth Maleta, and Mark Manary. Antibiotics as part of the
management of severe acute malnutrition. The New England journal of
medicine, 368:425–35, 01 2013.

117

[tH19] Muammer turkoglu and Davut HANBAY. Plant disease and pest detection
using deep learning-based features. TURKISH JOURNAL OF ELEC-
TRICAL ENGINEERING & COMPUTER SCIENCES, 27:1636–1651, 05
2019.

[VA19] Aravindhan Venkataramanan and Pooja Agarwal. Plant disease detection
and classification using deep neural networks. 08 2019.

[VNF+20] Ahmad Virk, Mehmood Ali Noor, Sajid Fiaz, Saddam Hussain, Hafiz
Hussain, Muzammal Rehman, Muhammad Ahsan, and Wei Ma. Smart
Farming: An Overview, pages 191–201. 02 2020.

[VTS04] JP. Vert, K. Tsuda, and B. Schölkopf. A Primer on Kernel Methods, pages
35–70. MIT Press, Cambridge, MA, USA, 2004.

[WLD+12] Min Wang, Ning Ling, Xian Dong, Yiyong Zhu, Qirong Shen, and Shiwei
Guo. Thermographic visualization of leaf response in cucumber plants in-
fected with the soil-borne pathogen fusarium oxysporum f. sp cucumerinum.
Plant physiology and biochemistry : PPB / Societe francaise de physiologie
vegetale, 61, 10 2012.

[WZL+19] Xiaoping Wu, Chi Zhan, Yu-Kun Lai, Ming-Ming Cheng, and Jufeng Yang.
Ip102: A large-scale benchmark dataset for insect pest recognition. pages
8779–8788, 06 2019.

[YYW+19] Ning Yang, Minfeng Yuan, Pan Wang, Rongbiao Zhang, Jun Sun, and
Hanping Mao. Tea diseases detection based on fast infrared thermal image
processing technology. Journal of the Science of Food and Agriculture, 99,
01 2019.

[ZBLN97] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm
778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained
https://www.overleaf.com/project/60883f2b0845848c36eb8171optimization.
ACM Trans. Math. Softw., 23(4):550–560, dec 1997.

[ZZZ+18] Dongyan Zhang, Xingen Zhou, Jian Zhang, Yubin Lan, Chao Xu, and
Dong Liang. Detection of rice sheath blight using an unmanned aerial
system with high-resolution color and multispectral imaging. PLOS ONE,
13:e0187470, 05 2018.

118

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem statement
	Aim of the work
	Methodological approach
	Structure

	Background
	Plant diseases and Smart Farming
	Plant disease identification AI algorithms

	Related Work
	Plant diseases
	Contributions
	Current trends
	Similar work

	Conventional Models
	Definitions
	Conventional model types
	Conventional models

	AI Models
	Data augmentation techniques
	Notations
	AI models for diseases that are caused by cold weather
	AI models for diseases that are caused by hot weather
	AI models for diseases that are caused by pests

	Evaluation
	Metrics
	Prototype
	Results

	Discussion
	Comparison of models for diseases that are caused by cold weather
	Comparison of models for diseases that are caused by hot weather
	Comparison of models for diseases that are caused by pests

	Conclusion
	Summary
	Limitations
	Future work

	Code listings and tables
	Description of data types
	Code listings for implementing a new model
	Endpoint descriptions

	Supplementary materials: source code of PDIS, models, and data sets
	List of Figures
	List of Tables
	Acronyms
	Bibliography

