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Abstract

Hard real-time computing systems play a crucial role in our society since a con-

siderable number of complex systems rely on processor control that must satisfy

specific safety conditions. Meanwhile, hard real-time computing has established

itself extensively in the area of safety critical systems, including applications such

as nuclear power plants, air traffic control, automotive electronics, robotics, mil-

itary systems and others. The program code of such hard real-time systems has

to meet specific demands with respect to worst-case performance, its so-called

execution time (WCET) and, moreover, requires specific properties in order to

enable an efficient Worst-Case Execution-time Analysis (WCET Analysis). Despite

these demands on the temporal behaviour of hard real-time code, it is still com-

mon to operate with traditional algorithms and programming structures which

are usually applied to non real-time applications. The objective of these tradi-

tional approaches is to obtain high temporal performance for the average case,

whereas the worst-case performance is considered to be of less importance. As

a matter of fact, however, the WCET of hard real-time code is one of the most im-

portant time constants and represents a temporal basic parameter of a real-time

system. In my thesis I want to contribute to the insights into an unconventional

progamming strategy that supports the construction of code that is well suited

for hard real-time systems, swapping the traditional priorities between Average

Execution Time (AVG) and WCET. The highly prioritised Worst-Case Execution-time

(WCET) is strongly associated with WCET Analysis which involves path analysis of

the code which is executed. In order to reduce the complexity of WCET analysis

there exists a special progamming paradigm where the key property is to write

single-path code. As as consequence, the paradigm makes it possible to obtain a

single execution path which makes path analysis and thus WCET analysis trivial.

The thesis demonstrates how to apply both, the progamming strategy mentioned

above as well as the programming paradigm for single execution paths by explor-

ing several pieces of code, respectively algorithms. Furthermore, the results and

comparisons of the different variants of algorithms will be presented and evalu-

ated. The thesis also explores how the concepts mentioned above can be applied
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to other classes of algorithms. By doing so it presents new strategies obtaining

single-path code with constant execution time for a wide range of programming

problems.
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Kurzfassung

Harte Echtzeitsysteme gewinnen in unserer Gesellschaft immer mehr an Bedeu-

tung, da sich bis heute bereits eine beträchtliche Anzahl von komplexeren com-

putergesteuerten Systemen, die speziellen sicherheitskritischen Bedingungen un-

terliegen, etabliert hat. Inzwischen findet man harte Echtzeitsysteme beson-

ders häufig in sicherheitskritischen Bereichen, zu welchen unter anderem der

Flugzeug- und Automotivbereich, Atomkraftwerke, Robotertechnik sowie die Mil-

itärtechnologie zählen. Der Programmcode solcher harten Echtzeitsysteme un-

terliegt bestimmten Anforderungen bezüglich der worst-case Performance bzw.

der worst-case Ausführungszeit (Worst-Case Execution Time, abk.: WCET) und

setzt bestimmte Eigenschaften voraus, um eine effiziente WCET - Analyse zu

ermöglichen. Trotz der Anforderungen an das zeitliche Verhalten von Programm-

code harter Echtzeitsysteme ist es teilweise nach wie vor üblich, mit tradi-

tionellen Algorithmen und Programmstrukturen zu arbeiten, die gewöhnlicher-

weise in Nicht-Echtzeitsysteme Verwendung finden. Das Ziel dieser traditionellen

Ansätze ist vor allem, einen hohen Durchsatz für den Durchschnittsfall zu erzie-

len, wohingegen die worst-case Performance dabei als nicht so sehr relevant

erachtet wird. Dennoch ist die WCET von Programmcode bzw. den Tasks har-

ter Echtzeitsysteme eine der wichtigsten zeitlichen Grössen und macht somit

eine elementare Eigenschaft eines Echzeitsystems aus. Hinsichtlich der WCET

soll diese Arbeit einen Einblick in eine unkonventionelle Programmierstrategie er-

möglichen, welche speziell für harte Echtzeitsysteme geeignet ist. Diese Strate-

gie macht es sich zum Ziel, die traditionellen Prioritäten von Durchschnittsaus-

führungszeit (Average Execution Time, abg.: AVG) und WCET zu vertauschen.

Die in diesem Gebiet besonders wichtige WCET ist stark mit der WCET-Analyse

verbunden, in welche die Pfadanalyse ebenfalls stark miteinfliesst. Um hierbei

die Komplexität der WCET-Analyse reduzieren zu können, existiert daher ein

spezielles Programmier-Paradigma mit der Haupteigenschaft, Single-Path Code

zu erzeugen. Dieses Paradigma soll ermöglichen, dass das entsprechende

Programm auf einem einzigen Ausführungspfad ausgeführt wird. Diese Ar-

beit demonstriert diesen Ansatz anhand einiger ausgewählter Algorithmen, auf
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welche sowohl diese Methode als auch die bereits angesprochene Strategie

angewendet wird. Darüber hinaus werden auch Ergebnisse und Vergleiche von

den Varianten der entsprechenden Algorithmen präsentiert und die Sinnhaftigheit

dieser Vorgehensweise beurteilt. Die Arbeit erforscht unter anderem auch die

Ausweitung dieser Konzepte auf andere Klassen von Algorithmen und zeigt dafür

auch neue Ansätze für die Vereinheitlichung des Ausführungspfades und der Aus-

führungszeiten.
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Chapter 1

Introduction

In the past years the computer system industry has developed itself strongly

in the area of hard real-time computing systems. The demand for this kind of

systems emerges every day more and more in our society. Current technologies

like automotive electronics or air traffic control but also future developments such

as advanced robotics systems rely on specific safety conditions and guarantees

related to the functionality of a system which are satisfied by the basic principles

of hard real-time systems. One of these principles is to deliver computed results

of a task within a certain time interval. In fact this can be achieved if the Worst-

Case Execution Time (WCET) of all tasks is known in order to prove that the

hard real-time system meets all its deadlines. The WCET is one of the central

parameters that characterises the timing of a piece of hard real-time code.

Knowing the WCET of a task is a basic requirement for building hard real-time

systems. The Worst-Case Execution Time Analysis (WCET Analysis) provides the

base for determining WCET bounds for all time-critical tasks of a hard real-time

system. WCET analysis assesses the execution time of isolated tasks.

In the past, computer architectures used in embedded hard real-time sys-

tems were much simpler in their complexity. Consequently the development of

the WCET analysis for this kind of systems shaped up accordingly to the charac-

teristics of these architectures. Timing analysis used hierarchical timing models

- models that separate timing issues of the low level task from the real-time

scheduling at the high level. By then WCET analysis had started to become an

independent field within the research on real-time systems. Methods were devel-

oped for identifying paths through pieces of code and strategies were found for

computing WCET estimates.

With the further development of computer architectures the WCET analy-

sis had to be extended for being able to compute estimates for code running

on more complex architectures. Dealing with the modification and extension
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of hardware required to model the effects of instruction pipelining and caches.

Although the new hardware came up with lots of new temporal properties the

basic timing models of WCET analysis remained unchanged. In order to deal

with these changes an additional analysis step was established, using specific

hardware and software information in order to achieve a pessimistic estimation

of the worst-case effects of the timing interactions between different tasks [13].

Even though there are technologies and tools that allow proper timing analysis of

more complex processors systems the effort and the costs of determining the

temporal behaviour of such systems are very high. Furthermore the costs of the

analysis of such systems are increasing disproportionally with the degree of com-

plexity of the architectures, which clearly shows the gap between the properties

of the current hardware and the current capabilities of timing analyses.

However, WCET analysis has not only to deal with characteristics of current

computer architectures. It also gets affected by the nature of program code

which gets executed on these architectures. The design of program code used

in computer systems traditionally has properties which originate from earlier

conditions. These properties are representing intuitive programming strategies

which are not only inappropriate for the simplifcation of WCET analysis but are

also a substantial factor for the complexity of the analysis.

1.1 Motivation

WCET analysis is a field of research which by now has reached its limits in some

specific areas, since the effort and the level of complexity needed for analysing

a software-hardware construct is not always convenient. Although there are ap-

proaches including abstractions and pessimistic assessments it becomes clearer

and clearer that for achieving a better performance of WCET analysis it is not

only the WCET analysis itself that has to get enhanced and adapted, but rather

the domains of hardware respectively software, in other words the entities of

these two domains which need to be analyzed by the WCET analysis.

Hardware architectures of the most complex processors are usually not used

in embedded real time systems but it has to be said that most processors which

are actually used, have possibly problematic features. These kinds of architec-

tures are designed in a way which makes the execution of instruction hardly

time-predictable. On the other hand, the software design is another important

requirement for the predictability of a computer system and its structure is one

of the most important conditions in order to enable an adequate WCET analysis.

Besides, there is a strong connection between both of these domains in which
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the interdependencies play a crucial role when devoloping hardware or software.

1.2 Approach, Objectives

In order to improve worst-case performance and achieve better prediction of

WCET, the WCET analysis has to deal with different areas that include hardware-

and software - models. The software aspect includes path analyses in order

to identify and explore the possible execution paths through the code. On the

hardware level the worst-case timing of possible paths on the target hardware

gets modeled, and has to struggle with possibly sophisticated hardware features

like instruction pipelines, caches and parallel execution units whose interferences

are highly complex and cause timing anomalies. Employing special caches that

use using a sophisticated replacement policy can even cause timing anomalies

which are not dissolvable.

The purpose of this thesis is to explore the employment of a particular pro-

gramming paradigm which helps us to reduce the complexity of WCET analysis

in the domain of software, more precisely in the field of path analysis. Pro-

gramming code which is written accordingly to this paradigm only has a single

execution path. Thus, the complexity of path anlysis can be reduced enormously

by using this approach of single path code. Applying these techniques to some

sample algorithms requires a reconception of the particular samples respectively

algorithms which is a main purpose of this thesis as well.

1.3 Related Work

The approach of producing code that has a single execution path, denoted as

single-path code, is a quite new effort on developing software whose timing is

easy to predict and to analyse (in terms of its temporal behavior). Since the real-

ization of this method depends on certain properties of the underlying hardware

and most of the common hardware does not satisfy the required conditions, the

research field for that area seems to be quite developable.

The theoretical background of that strategy has already been published, see

[3], [4] as well as [5]. Also, there exists some work that explores the practical

appliance of that approach in combination with appropriate hardware support [6].

Even though most of the algorithmic problems have not beend considered so far,

previous work one the single-path approach could already prove that there is

huge potential in order to gain considerable advantages regarding the WCET
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analyses. This was shown by different experiments on a certain hardware [6].

This thesis is strongly based on the theory of the single-path approach and

coincides also with some algorithmic problems that have been evaluated already

in earlier publications. The illustration of these algorithmic problems should allow

the reader to get a deep understanding of the underlying approach. With this

understanding the reader should be able to follow the contributions that are given

in this thesis.

1.4 Contribution

The theme of this thesis is the concept of the single-path approach and its

extension. These extensions address problems that are part of special classes

of algorithms which contain basic arithmetic issues that are not solvable with the

original approach. The following summarizes the contributions of the thesis.

• The thesis attempts to identify generalizations for the single-path program-

ming strategy. This is achieved by studying and evaluating several algo-

rithms that are suitable for the single-path approach.

• Using the ARM7 TDMI on a ST730 evaluation board with an associated

development environment, the thesis characterises the requirements for

the underlying hardware and the compiler.

• By performing experiments with the used target, this thesis illustrates re-

sults for the examined algorithms and shows that for all these algorithms a

single execution path and exection time can be achieved.

• This thesis presents not only implementations of the single-path approach

for already known problems but also shows utilities for that strategy when

examining algorithmic problems of a different kind of nature. Therefore, this

thesis provides new strategies that use data tables and basic arithmetic

functions. These strategies are used to extend the single-path approach in

order to gain solutions for mathematical algorithms.

• The thesis concludes with an evaluation and discussion of the results which

have been performed during the experiments. Furthermore, the thesis

provides proposals for future research in the hardware and the software

area.
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Chapter 2

Technical Background

2.1 Real-time Systems

A system is said to be a real-time computer system if the total correctness of the

system behavior does not only depend on its logical result of the computations,

but also on the time at which the results are delivered. The real-time computer

system is always part of a larger system whereas such a system is called a

real-time system. A real-time system changes its state as a function of physical

time (vgl. Kopetz, Real-Time Systems, S2) [7].

A real-time computing system has to react to certain stimuli, produced by the

controlled object, within time intervals which are given by its environment. The

instant at which a result must be produced is called a deadline.

2.1.1 Hard and Soft Real-time Systms

The classificatin of real-time computer systems primarily depends on the kind of

deadlines used in these systems. If a result has utility even after the deadline has

passed, the deadline is classified as soft, otherwise it is firm. If the consequences

of missing a firm deadline may result in a disaster, the deadline is called hard. An

example for such a scenario would be a train crossing a road with a traffic signal

not changing to "red" in time before the train arrives at the crossing, which may

lead to a catastrophe.

The design of hard real-time systems is fundamentally different from the de-

sign of soft real-time systems. A hard real-time computer system must gurantee

a proper temporal behavior of the system under all specified load and fault con-

ditions. In contrast to this a soft real-time computer system is permitted to miss

a deadline occasionally.
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2.1.2 Tasks of a Real-time System

Usually, a real time system consists of several tasks. A task is the execution of

a sequential programm, starting with the input data and the internal state of the

task, and terminates with delivering the results and updating the internal state.

Such a task is called a task with state. If a task does not have an internal state

at its point of invocation it is called a stateless task. A task can contain several

functions but generally it is engaged with one particular assignment.

A task without a synchronization point is called a simple task (S-task). When-

ever such a task has started, it can continue until its termination point is reached.

Because such an S-task cannot be blocked within the body of the task, the exe-

cution time of the S-task does not directy depend on the progress of other tasks

and thus, can be determined independently. However, it is possible that the exe-

cution time of such a S-task gets extended by indirect interactions, for instance

by task preemption by a task with higher priority.

A task is called a complex task (C-task) if it contains at least one blocking

synchronization statement. This could, be for instance, a semaphore ”wait”

operation. This might happen if the task has to wait until a condition outside

of the task has been satisfied or if another task has updated a shared data

structure. When using such data structures as a protected shared object,

there is only one task which can access the data at any particular moment and

therefore other tasks need to be delayed by ”wait” operations. Hence, the WCET

of a complex task is a global issue, since it might depend on the progress of

other tasks (vgl. Kopetz, Real-Time Systems, S2) [7].

2.1.3 Time-Triggered and Event-Triggered Real-time Systems

There are two main paradigms for designing a real-time system. Depending on

the desired properties of the system it is possible to choose either an event-

triggered or a time-triggered approach. In a purely event-triggered system all

system activities respectively tasks are initiated dynamically by the occurrence

of significant events. On the contrary, in a time triggered-system tasks are acti-

vated according to a static schedule. There is great demand for both strategies

and since there are different requirments on various real-time systems, both

paradigms have their legitmation in our world and may even be combined with

each other.

If we consider the transportation system in our society, we would describe

private cars as an event-triggered method since they can be used dynamically

on demand. On the other hand the public transportation system works in a
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time-triggered manner because the usage of buses or trains underlies statically

predifined schedules without the possibility for dynamic interactions.

2.1.4 Programming Constraints for Real-time systems

Real-time systems only use a restricted form of programming. This form guaran-

tees that such systems always terminate. Thus they must not contain recursion

without explicit bounding. For constructs like loops there are similar constraints

concerning their iterations counts. All loops must be bounded.

2.2 Worst-Case Execution Time Analyses of Real-time

Systems

There exist several tools and strategies for determining WCET bounds. Some

methods are based on static analyses of the program and others use measurement-

based approaches. Both, the static and the measurement-basesd methods have

to handle certain problems and requirements due to the complexity of hardware

and software environment. The following sections will describe these problems

and demands and give an introduction to these two categories of approaches

and their usage in a more detailed way.

2.2.1 Overview

The worst-case execution time (WCET) is the maximum execution time for a

piece of code of a task which performs on a given hardware. We call the short-

est execution time best-case execution time (BCET). Depending on which kind of

system gets explored, there are different requirements for evaluating the WCET,

whereas detailed knowledge of the WCET is important especially for reliable sys-

tems, such as hard real-time systems. The worst-case execution time analyses

(WCET analyses) computes upper bounds for the WCET.

Naturally the worst-case execution time of a task could be easily given if the

worst-case input of the task would be known but usually the worst-case input

is neither known nor easy to identify. In generell a real-time system consists

of a number of tasks which implement the desired functionality. Such a task

comprises different execution paths associated with different execution times,

depending on the input data and the environment. Since the state space might

be very large, in most cases exploring all possible execution paths would be too
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costly. Thus, it is a common strategy to consider just a subset of all possible

executions for measuring the end-to-end execution time of a task. However this

will overestimate the BCET and underestimate the WCET and therefore does not

provide a sufficient guarantee for hard real-time systems. Real bounds on the

execution times of a task can be determined only when considering all possible

execution times. This can be achieved by using abstraction of the task that

helps to obtain a chance for timing analysis, which usually results into a large

overestimation for the WCET and an underestimation for the BCET. Besides, it

is not uncommon that the WCET estimate is achieved by the knowledge and

experience from earlier measurements, though with a large overapproximation

added.

Especially the overestimations can be considerably larger than the real WCET

of the task. As long as there is room for all tasks in some schedule there is no

problem but in the case of an almost full schedule and the request for adding one

or more tasks it would be definitely of highest interest to achieve tighter WCET

bounds. A task shows usually different execution times depending on the input

data and the environment that is given by the state of hardware and software.

An example for the typical timing parameters of such a task is shown in Figure

2.1. The upper curve represents the set of all execution times including the

subset of executions, represented by the lower curve.

Figure 2.1: Timing diagram for a real-time task [1]

2.2.2 Problems and Requirements

The time for a particular execution depends naturally on the particular path given

by a task and the current hardware state. According to the sequence of state-
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ments respectively instructions given by this task, which is executed on a specific

hardware, there ermerges a particular execution time. The determination of the

execution-time bounds has to consider all possible sequences and states with

respect to the control flow of the task.

2.2.2.1 Data-Dependent Control Flow

The execution path primarily depends on the initial state and the input of a task.

Since this two facts are usually not known, the data structure , the task’s control-

flow graph (CFG) allows to describe a superset of the set of all execution path.

The construction of this control-flow graph has to deal with problems created

by dynamic jumps and dynamic calls. For instance switch-statements lead to

dynamic jumps and cause problems when analyzing machine code since the

assembly code sets labels for such branches.

The paths taken through the superset of the CFG depend directly or indirectly

on the input data where some paths in the superset will be never taken. These

are the ones which have contradictiory consecutive conditons and therefore can

be eliminated. Among other things this can be achieved by a phase called control-

flow analysis (CFA), also called High-level Analysis, which is useful for increasing

the precision for subsequent analyses. It includes also the determination of

execution frequencies of paths and their relations. Furthmore it has the function

of determining bounds of the iterations of loops and on the depth of recursions

of routines.

2.2.2.2 Dependences of Execution Times

As already mentioned, timing analyses approaches of the past were used to deal

with hierarchical timing models that separate timing issues of the low level task

from the real-time scheduling at the high level. In other words, the problem of

timing analysis has been solved under the assumption that the timing behavior is

context independent. For processors, according to older previous standards, the

execution times for individual instruction were independent from the context, that

is the execution history, so that times for instructions could be easily looked up

in the associated manual of the respective processor. The underlying approach

was a structure based one (Shaw 1989) and stated that if a task executes a

piece of code A and subsequently another piece B, the total worst-case bound for

A;B was the sum of both, the worst-case bound of A and the one of B, formally

written as ubA;B = ubA + ubB

Since the emergence of caches and pipelines in more modern processors
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the model of context independence does no longer exist and execution times of

instructions may vary depending on the current processor state in which they are

executed. That means, if we consider again our example of the task performing

two pieces of code, A and B, the execution time of B which is following A, may

depend stronlgy on the execution state produced by the execution of the previous

piece of code A or even code executed before A. Obviously a structure-based

approach is not able to consider this inter-relation.

The Processor-Behaviour Analysis, usually called Low-level Analysis has to deal

with examinations of the processor behaviour in order to model the behavior for

a given task and all components influencing the execution times of it. Such

influences are caches, memories, pipelines and also branch prediction. Hence,

with this analysis it is possible to determine upper bounds on the execution times

of instructions.

2.2.2.3 Timing Anomalies

Timing anomalies are an unexpected behavior of different features in modern

complex processors and cause problems when performing a WCET analysis on a

given target since the involved hardware needs to be integrated into the analysis

process as well. The most powerful microprocessors comprise an highly complex

processor architecture and therefore suffer from such timing anomalies. The

notion of timing anomalies was introduced by Lundqvist and Stenstroem [8]. A

timing anomaly is a situation where the local worst case does not implicate the

global worst case (vgl. Reinecke et al. 2006).

In the following we want to illustrate the scenario of a timing anomaly by

giving some examples. The first one demonstrates the different consequences

for having either the occurrence of a cache miss or a cache hit in combination

with branch prediction, shown in Figure 2.2

Figure 2.2: Speculation caused timing anomaly [2]
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The first case - the case of the cache hit - shows an execution with starting

an instruction fetch from the cache, whereas the second case of the cache miss

may lead to an execution starting with a cache load and thus possibly causes

an increase of the execution time due to the cache-miss penalty. Typically, one

would assume to get longer execution times by the occurrence of cache penalties

like in the second case. But since the processor speculates on the outcome of

conditional branches which results in prefetching of instructions in one of the

directions of the conditional branch this assumption is not necessarily true.

Considering our first case now we can have a look at what will happen after

finally evaluating the condition and recognizing that the wrong direction has been

speculated by the processor before. The consequences are that the cache

content gets affected in a negative way and hence all effects have to be undone.

Thus, the first case, also observed on the Motorola ColdFire 5307 processor [9],

is stated to have a longer execution time than the second one. This illustrates one

of the reasons for timing anomalies, specified as speculation-caused anomalies

(vgl. Reinecke et al.) [2].

Another example for timing anomalies is the scheduling-caused anomaly. Be-

cause of scheduling characteristics there can arise a scenario where a cache

miss (the local worst-case) may result in a shorter execution time, than a cache

hit. This is shown in Figure 2.3.

Considering now the second case in the figure, task A obviously benefits from

the cache hit and thus takes less time for finishing. But shortening task A leads

finally to a longer overall schedule, because task C gets now blocked by task B.

Figure 2.3: Scheduling caused timing anomaly [2]

Summing up we can state that the existence of timing anomalies in a given

processor always has a strong influence on the applicability of methods for timing

analyses for that processor. The problematic and underlying assumption which is
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violated by timing anomalies is basically that in case of a choice always the local

worst-case transition can be taken in order to produce the global worst-case

execution time. Thus, the consequence and challenge for analysis is that it has

to follow executions through several processor states, whenever it encouters

states with a non-deterministic choice between successor states. Obvioulsy this

may lead to a very large state space which needs to be incorporated into the

analysis [9].

2.2.2.4 Methods required for Subtasks of Timing Analysis

There are several methods for the static and measurement-based approaches

used for solving the problem of timing analyses. These methods vary from each

other and can be automatic, manual or generic. Some of them are applied at

analysis time or at tool-construction time. The combination of such methods is

required in order to realize a timing analysis method. We want to mention some

of the most common ones briefly in the following section.

Static Program Analysis is a generic method for determining properties of the

dynamic bahviour of a given task but without executing it. In general such prop-

erties are often undecidable. If we consider, for example, the instruction-cache

analyses, determining for each program point in the task which instruction will

be in the cache at that particular moment, we will recognize that under certain

circumstances this may appear to be feasible but usually it is not possible to de-

termine that for tasks whose control flow depends on input data [1]. The problem

of input-data dependent control decisions in a task respectively an execution is

significant and will be discussed in detail in further sections of this work.

Measurement of a subset of all possible executions can be used as well in

order to produce estimates of the WCET. Since this is just about estimates and

not bounds, there are no guarentees, thus such measurements may just be

usefull for applications like non-hard real-time systems. When considering quite

simple architectures it is possible to achieve bounds which are safe enough to

obtain guarantees.

Another standard technique for estimating the execution time for tasks on

a given hardware architecture is Simulation. Although for different types of ar-

chitecures not all simulators can be trusted as clock-cycle accurate simulators,

it is usually possible to achieve rather accurate estimations of the execution time

when using an architectual simulator with a sufficiently detailed timing model.
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2.2.3 Static Methods

In contrast to measurement-based dynamic methods, static methods are not

based on executing code on the real given hardware. These methods include

the code itself, possibly with some remarks, and analyze the set of all possi-

ble control flow paths through the task. The underlying hardware architecture

gets abstracted in order to obtain simplified hardware models. Using them in

combination with the control flow allows to compute upper bounds of the ex-

ecution time. One such approach for static methods is described in detail by

Wilhelm [10].

2.2.3.1 Main components of a static timing analysis tool

The following figure 2.4 shows the basis components and the flow information

of a static timing analysis tool. We want to discuss the main properties and the

functions of the individual parts, with the main focus on Control-Flow Analysis and

Processor-Behavior Analysis.

Figure 2.4: Abstract illustration of basic components of a timing analysis tool

The function of control-flow analysis is to collect information about possible

execution paths. In general its not possible to determine the exact set of paths.

The input of flow analysis consists of a representation of the task which is some-

thing like the call graph and the control-flow graph (CFG). There can be also

additional information, given by the user, like ranges for input data or iteration

bounds on the loops. The result of the flow analysis can be used to define the

dynamic behaviour of the task. It provides inforamtion about the fact which func-

tion may get called and which dependecies exist between conditionals. In general

it provides knowledge about the possibility of paths.

Processor-behavior analysis has to deal with the problems created by typi-

cal components of processors that make the execution time context-dependent,

such as memory, caches, pipelines and branch prediction. As already mentioned

the execution time of an individual instruction may depend on the execution his-

tory. Hence, in order to determine bounds for the execution time, it is required
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to analyse the whole set of states of processor components associated with the

paths leading to the task’s instructions. Thus, the whole processor periphery has

to be taken into acccount in order to guarantee proper analyses. This includes

the full memory hierarchy, the bus and all peripheral units. For this reason a

more appropriate term for this analysis would be hardware-subsystem behavior

analysis [1].

In general the analysis is based on an abstract model of the given processor

and all other components including peripherals and naturally the memory sub-

system and the buses. The model is contructed in a way that it will never predict

the time for an execution to be shorter than the time for the same execution

executed on the given processor. The challenge for deriving such an abstract

processor model can be quite complex and strongly depends on the category of

processor used.

2.2.4 Dynamic (Measurement-based) Methods

These methods are solving the problem of timing analysis by executing the given

task on the given hardware or on a appropriate simulator. Then the execution

time for the whole task or some parts of it is measured by considering some

set of inputs. Many different measurements have to be done on many different

inputs and the highest time measured might be the actual WCET.

Since the set of inputs does not necessarily cover all possible input-sets by

which not all possible combination of inputs can be measured, there is no guar-

antee that the actual WCET has been found. In other words, if the subset is

not guaranteed to contain the worst case, measurements of this subset of all

possible executions can produce only estimates for the execution time but no

bounds. Thus, there is always a safety margin added to the measured WCET,

when using such a method [1].

There are several approaches to measure the execution times of code seg-

ments which are typically CFG basic blocks. The results of these measurements

are getting analysed and finally can be used for bound calculation in order to

achieve estimates of the WCET and BCET. Thus, such measurements can be

used to replace the processor-behaviour analyses used in static methods and

the path-subset problem can be solved by using control flow analysis to find all

possible paths. Subsequently overall time bounds are computed by combining

the measured times of code segments which is done by bound calculation.

Although this approach would consider all possible paths it could still produce

unsafe results because of the fact that only a subset of possible contexts (initial

14



2.2. WORST-CASE EXECUTION TIME ANALYSES OF REAL-TIME SYSTEMS

processor states) is provided for each basic block respectively code segment.

In fact it is possible to decrease the risk of unsafe results by running some

additional tests to measure more contexts but usually testing of all execution

paths is probably not possible and usually unworkable. Thus, we can summarize

that when using measurment methods, determining the worst-case initial states

is still hard or almost impossible for complex processors and only for processors

with simple timing behaviour it is feasible to compute bounds on the execution

time.

2.2.5 Comparison of Static and Measurement-based Methods

Static methods are able to compute bounds on the execution time by using

control-flow analysis and bound calculations to cover all possible execution paths.

Abstraction is used to cover all possible context dependencies in the processor

behaviour. In order to obtain this level of safety an enormous effort for producing

processor models has to be done. Furthermore, there is no guarantee that the

obtained results for the bounds of WCET are precise. Thus this can results in

an overestimation. On the other hand an enormous advantage of static methods

is the fact that the analysis of a particular program can be done without running

the program itself. Thus, costs for complex hardware and simulation of the

hardware and peripherals of the given system can be saved.

Measurement-based methods can replace processor-behaviour analysis by

measurements. The measurment-based methods usually use control-flow anal-

ysis to include all possible execution paths in order to perform an estimate cal-

culation. The safety of the measurement-based method strongly depends on

the fact whether it is feasible to measure all existing execution paths. Another

aspect regarding the safety is the fact that measurements have to get started

in a worst-case initial state under the condition that the processor is simple

enough to do so. But as already mentioned in previous section, this is not always

achievable.

However, one major advantage claimed for measurement-based methods is

the fact that they are simpler to apply to new target processors, because mod-

eling of the processor behaviour, which is highly expensive, then becomes ob-

solete. Another advantage is that these methods usually produce more precise

estimates for the WCET and BCET which are closer to real timing values than

the bounds obtained from static methods, especially for complex processors.

Therefore, measurement-based methods can be used for validation of static

analysis approaches. With the results of measurement-based analysis it is pos-
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sible to obtain a picture of the variability of the execution times of the application.

Thus, comparisons of the results of both, static and measurement-based meth-

ods, is possible and may lead to a more reliable rating of the results achieved

by the static analyses. For instance, measurement-based methods should not

deliver execution times that are much lower than the ones predicted by static

analytical methods. If there occurs a remarkable difference between the deliv-

ered execution times this would indicate that the values of the static method are

inaccurate [1].

2.2.6 Limitations of WCET Analysis

From a theoretical point of view, static WCET analysis has some advantages

over the measurement-based approach. As already mentioned, the guarantee

for determining reliable bounds on the WCET cannot be ensured by using solely

measurement-based techniques. Furthermore, if only partial knowledge of the

control flow is available, calculating the WCET bound with static analysis results

in a safe bound as well. Both methods, the static and measurement-based one,

have their limitations due to several reasons.

In practice, one of the limitations of static WCET analysis concerns the flow

facts which describe the possible control flow paths of a program. Generally,

determining flow facts is not just an automatic process but rather requires code

inspection and code annotations by the programmer in order to achieve precise

control flow paths. This information is then used to calculate bounds on the

WCET. However, in practice such specifications about flow facts are not pow-

erful enough to cover the requirements for several architectures. This may be

possible for simple processors without caches and pipelines but for modern pro-

cessors this information is not sufficient. This is because of the fact that the

characteristics of pipelines and caches depend strongly on the concrete execu-

tion order of instructions. Hence, determining the flow facts need to incorporate

the execution order of instructions in a much more detailed way which is even

more complex and might lead to additional pessimism.

At the same time we have measurement-based approaches which perform

measurements on the runtime and do not depend on information concerning the

control flow. Nevertheless, obtaining WCET bounds requires to determine all

relevant execution scenarios for beeing measured. Such an execution scenario

is given by an initial state of the target hardware and a certain set of one or more

parameters representing the input data. The remaining problem is now to make

sure that all relevant values for the input data have been found, because only then
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it can be ensured that all relevant execution scenarios were tested. Considering

the whole value space of possible input data is generally not feasible because of

the costs and efforts. However, the miss of considering some relevant values for

the input data can result into an underestimation of the WCET bound. In order

to avoid this problem the WCET bound is usually extended by some additional

offset.

Hence, we can conclude that the limitations of measurement-based approaches

and static WCET analysis are somehow analog. Static WCET analysis methods

require sufficient flow facts in order to model the control flow of a given code

where measurement-based methods need to provide precise information about

execution scenarios to be tested. The requirements of both of them cannot

always be satisfied, thus pessimistic estimations are the consequences.

2.2.6.1 Hardware Reality and Analysis Reality

As already mentioned in Section 1.2 the WCET analysis is not only limited by the

magnitude and diversity of written software but also refuses to work when trying

to model the timing behavior of some sophisticated hardware. The situation for

timing analysis capabilities versus complexity of current hardware, introduced by

Kadlec and Kirner [11], is illustrated in Table 2.1

It shows us the wide gap between current properties of hardware and the

current capabilities of timing analysis. Hence, CPUs including features like a

Pseudo Least-Recently-Used (PLRU) cache replacement strategy are not suitable

for embedded real time systems since they are not analysable and can cause

unbounded effects on the WCET.

timing analysis capability current hardware

Caches

levels level 1 level 3

separation separated (Harvard) 2nd and 3rd level combined

associativity 2-way up to 16-way

replacement LRU PLRU, PRR

Branch Prediction

history local 2-bit saturating mixed local / global

locality local only mixed local / global / tournament

Table 2.1: Analysis Capabilities and Current Hardware

Considering Moore′s law, in the last centuries the transistor count per chip

has doubled about every 2 years due to hardware improvements and thus also

has been improved the performance. On the other hand we have Proebsting′s
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law, stating that the performance doubling due to compiler technology happens

only every 18 years.

Both "laws" are criticized for their extrapolation but their disputed statements

together express the industrial reality of the past thirty years.

As stated in [11], the complexity of timing analysis is rising at least as fast as

the complexity of compilers and thus it is highly unlikely, that analysis precision

can catch up with the imprecision gained by already present hardware features.

2.3 Processor Architecture and Compiler

There are some general properties and characterisitics when dealing with archi-

tectures and compilers. Since we have to consider several points of those issues

in further sections, including measurements of execution time but also compiler-

behavior, we want to highlight some common terms and concepts, relevant for

further treatment in this thesis.

2.3.1 Common Terms

The term (computer) architecture includes the following three main subcate-

gories, covering the three aspects of computer design [12].

• Instruction Set Architecture (ISA): The ISA is the abstract image of the

computing system from the view of the machine language (assembly lan-

guage), including the instruction set, word size, adress modes and process

registers as well as adress and data formats.

• Microarchitecture - also known as Computer organization: This represents

a more detailed lower-level description and describes how the individual

parts of the system are interconnected and how they interact with each

other in order to implement the ISA. For instance, the size of the cache

would be such a property and thus is an organizational issue.

• System Design (Physical Hardware): This includes all other hardware com-

ponents of a computing system such as computer buses, memory con-

trollers, hierachies and other issues like multi-processing.

In this work we are mainly dealing with the ISA which defines an abstract in-

terface between hardware and low-level software. For a specific ISA there might

be different implementations, which might have varying costs and performance
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but in any case, the functional requirements of an ISA have to be met by the

implementation.

There are rising up some important facts for WCET analysis when consid-

ering the separation of hardware architecture and implementation. A routine

respectively program, which needs to be analyzed, may exist in different forms,

depending on the compilation process, beginning with the high-level language

(source File in C code), subsequently assembly code, after this the object file and

finally an executable binary.

These different forms are identified as representation levels [13]. Even though

the covered information satisfies the characteristics of the ISA, the timing infor-

mation necessary for WCET analysis is not available. Hence, it is very important

to consider the complete architecture for WCET analysis, since the whole timing

information can be obtained only when considering both, the hardware- and the

software design.

2.3.2 Execution Time

Since we are going to determine the execution times, when treating several

experiments in further sections, we want to highlight some metrics. In order to

analyze execution times for programs it is generally possible to use one of the

following definitions. According to [14], the total execution time of a program p

can be defined as

CPU time = CPU clock cyclesProgramm p ∗ Clock cycle time (2.3.1)

with

Clock cycle time =
1

Clock frequency
(2.3.2)

Regarding hardware performance, it can be sometimes meaningful to focus

on the total number of executed instructions (IC). To reason about the perfor-

mance, the term cycles per instruction (CPI) is given by

CPI =
CPU clock cyclesProgramm p

IC
(2.3.3)

wheras the CPU time of the programm can be expressed as

CPU time = IC ∗ CPI ∗ Clock cycle time (2.3.4)

The instruction count (IC) is determined by the compiler technology which is
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used and moreover by the ISA. The cycles per instruction (CPI) depend on the

organization and instruction set of the architecture, wheareas the clock cycle

time depends on the hardware technology.

For usual experiments like shown in further sections of this thesis, it would

be sufficient to restrict measurments regarding the execution time of a given

program on the number of CPU clock cycles required by the that program.

2.3.3 Compiler Issues

Compilers translate high-level programming languages (such as C) into assembly

code for a given target processor. In the area of processor-based embedded sys-

tems, the usual employment of well-established compilers is neither common nor

always possible. Under certain conditions, program designers need to adapt the

outcome of compilers and sometimes they are even forced to use only assembly

language to programm the desired features for an embedded application.

Although the programming effort of assembly compared with C is quite huge

and yields problems such as restricted code portability and even a reduced de-

pendability, such a programming approach has still enough eligibility when de-

signing embedded systems. This is because of the fact that embedded systems

very often require an extra high performance and efficency that can be provided

by an adequate machine code.

But another fundamental reason, arising in this thesis, lies in the fact that

widely-used compilers deform the potentially desired structure of the high-level

routine, with respect to the control-flow of that routine. Basically this happens

due to several optimizations performed by the compiler, in order to speed up the

final code for the target processor.

Thus, the choice of an appropriate compiler for a given target hardware is

essential when trying to maintain specific properties whereas the beneficial effect

will get clear and more traceable, when exploring further sections of this thesis.
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Approach

3.1 Problem

The problem of achieving predictable code originates basically from the intuitive

requirements of developments in computer science in the past where the ba-

sis for elementary properties of software and hardware were laid - properties,

which, in certain areas, have still been predominant until today. With the appear-

ance of software relevant to safety, hard real-time systems came up in order to

satisfy the requirements given by these applications in these days.

In order to facilitate the problem of predictability and thus WCET - analysis,

program code for hard real-time systems has to satisfy several conditions. Apart

from the already mentioned properties of programming style, including restric-

tions for recursions and loops, there are some further characteristics which have

to be satisfied in order to generate code that is well-suited for hard real-time sys-

tems. These characteristics - illustrated by a special programming paradigm,

respectively strategy - are going to be explained in detail in the following sections.

3.2 Requirements of Real-time and non Real-time Pro-

gramming

Requirements imposed on real-time and non real-time systems differ in several

ways. For now we want to compare the different performance requirements

regarding the program code for these systems.

If we consider systems which do not operate in a time-critical context, high

throughput would be the main performance goal. Naturally, this can be achieved

if the execution times of the main part of a certain task are short - in other
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words: speed optimization for the most probable execution scenarios is required

in order to achieve a better performance for the average case.

In contrast, the average execution time of the task in hard real-time systems

is less important. Instead, it is essential that any time-critial task meets its

deadline under all circumstances, even under peak load (Kopetz) [7]. In order to

ensure this, real-time tasks need to have a short WCET.

Formally the different performance requirements are described by Puschner

[4]. It is assumed to write a code that solves a particular problem. The space of

possible input data for this problem is DELTA = {δi} on a machine µ. The set P =

{pi} denotes the probabilities with which each of the input-data scenarios occurs.

For example, δi would be such a scenario.

According to [4] it is further assumed that PI= {πi} represents the (infinite) set

of correct code samples which is able to solve the given problem. The function c

= c(πj, δi, µ) returns the execution time of πj with input data δi on the machine

µ. Considering this set of definitions there are now emerging two totally different

formulations given by the following lines.

The following criteria derived in [4] identify the most appropriate solution for

real-time, that is πµ
wcet, respectively non real-time programming code, which is

πµ
acet.

Comparing the two formulas clearly shows the different intentions for real-

time and non real-time programming. The selection criterion in (1) for the most

appropriate solution does not really consider execution times of individual input-

data scenarios. Only scenarios with high probability have a strong influence on

the chosen solution πµ
acet.

In contrast to (1) the selection for (2) happens in a way that all scenarios

- independent of their probability of occourrence - are treated equally. Thus,

even the scenario with the smallest probability may influence the choice for the

program.

3.2.1 Traditional Performance-Oriented Approach

The typical program design for non real-time systems usually provides a speed

optimization for the most frequently used scenarios. The techique to implement
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such an optimized behaviour for specific frequent cases is to use program code

which processes its actions to be performed on the basis of input data. That

means that optimization for good performance is based on using input-data de-

pendent control decisions. Furthermore, this is the only effective and straight

way to achieve short execution times for the favoured input-data sets. There-

fore, such a programming style influences the quality of the achievable WCET in

a negative way. First of all, the non-favoured inputs need to be tested as well, but

since all execution times have to be considered in an equal way, the advantages

of favoured input data regarding their execution times cannot be exploited. An-

other important point is that this might result in different computational costs.

This is because of the fact that overall complexity gets distributed unevenly over

the input-data scenarios. In other words: a cost reduction for some part of the

input-data space will cause higher costs for the rest of the inputs.

Intuitively we would assume that if an implementation achieves short execu-

tion times for common scenarios (favoured input-data sets), we also suppose

that, in return, rare scenarios (non favoured input-data sets) would cause higher

execution times.

3.2.2 Worst Case - Oriented Method

In contrast to traditional performance-oriented methods the approach for worst

case programming uses completely different strategies. The strategy discussed

in the section before, where data-dependent control decisions are used, is based

on intuitive optimization patterns which we use in everyday life. On the other hand

WCET oriented programming is neither intuitive nor easy to model. It needs a

unusual way of thinking, one which is quite different from the solution strategies

normally used. Thus, code pieces respectively algorithms produced according to

this new approach very often do not appear to be straightforward.

In order to avoid certain shortcomings of the traditional approach the ne-

cessity of new programming strategy is given and formulated by Puschner [4].

It proposes WCET-oriented programming that aims at writing code that is free

from input-data dependent control flow decisions and if this cannot be completely

achieved, operations which are only executed for a subset of the input-data space

should be restricted to a minimum.

The outcome of applying the novel programming strategy should result in

pieces of code having no (or just a few) input data depending branches or loop-

conditions and moreover they should have a better or adequate WCET. Unfortu-

nately, it is not always possible to treat all inputs identically and also the WCET
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might be higher than in the traditional approach. Basically, this depends on the

kind of algorithm used.

Another important point, which has to be made, is that the way of program-

ming has a huge impact on the complexity of WCET analysis. There is a strong

relation between the number of input-data-dependent alternatives and the num-

ber of execution paths through a piece of code. The appliance of this fact can

be exploited when one tries to determine the WCET for a given piece of code,

because evaluating a smaller number of paths for WCET analysis is much easier,

especially when working on an sophisticated architecture. Besides, the chance

of faults is much smaller when characterising all the paths.

3.3 The Single Path Approach

Programs usually behave differently for different input data, that means that de-

pending on the input, code is executed on different execution paths. Hence, the

central idea of the single-path approach is that programmers design programs,

respectively algorithms the behaviour of which is independent of input data and

which can be executed on one single execution path. Having a single execution

path would make WCET analysis very easy.

Such an approach may seem to be quite restrictive and one would think that

programmers would be just allowed to write entire simple programs, but it can

be shown that the single-path approach is not that restrictive at all. This belief

is justified by the fact that any piece of code that is WCET-analysable can be

translated into code with a single execution path [3]. Such a translation uses

if-conversions [5] in order to produce code that keeps input-data dependent al-

ternatives in the code local to single conditional operations with data-independent

execution times [3].

3.3.1 The Constant-Time Conditional Expression

In order to transform input-data dependent branches and their alternatives into

sequential code and thus achieving predictable program code, a special feature

is needed for implementing the desired behaviour: it is the constant-time condi-

tional expression operation. A constant-time conditional expression consists of a

boolean expression Cond and two expressions Expr1, Expr2. For this expression

we use the following notation, as introduced in [3].

Depending on the boolean condition Cond either the value of the result of the

first expression Expr1 or of the second one Expr2 is taken. More precisely, if
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Cond evaluates to true then the result of Expr1 is the value of the constant-time

expression but if Cond evaluates to false then the value of the constant-time

expression is the result of Expr2.

——————————-

Cond # Expr1 : Expr2

——————————-

Choosing the syntax of the constant-time conditional expression like described

above had the following reason. The well-known conditional assignment operator

(cond ? expr1 : expr2) used in the C programming language has quite similar

intentions and if we assume that Expr1 and Expr2 do not have any side effects,

the result would be actually the same.

However, if we have a closer look on both of the expressions, we will discover

some elementary differences. The standard C conditional expression represents

the classical if-then-else - construct. It evaluates the condition at first and, de-

pending on the result, it subsequently executes either the branch for true or the

one for false. Unlike the C conditional expression, the constant-time conditional

expression evaluates both expressions at the beginning and evaluates the condi-

tion afterwards. Finally, the only step left to be done - depending on the condition

evaluated before - is to return one of the two expression results as the value of

the whole operation. The different semantics of the two conditional operators

are shown in Figure 3.1.

Figure 3.1: Standard C conditional (1) and constant-time conditional (2)

Since the C conditional expression (1) only evaluates one expression, the

constant-time conditional expression (2) obviously takes more time to perform
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than the C conditional, and if we assume, for instance, that both expressions

inside would require equal effort, the time needed by the C conditional would be

twice as much. Nevertheless, the advantage of the constant-time conditional

should become clear if we consider for instance two totally different alternatives

of a branch. In the C conditional (1) these alternatives would lead to different

execution times, whereas this problem cannot occur when using a constant-time

conditional expression (2).

The latter works as follows: Both alternative expressions are executed in a

sequence. Then, the result of the overall conditional is selected and finally gets

returned within constant execution time (see the bottom of the box at (2) in 3.1).

Generally, it is not possible to predict the exact execution time of a construct

such as given in (1) and in contrast the particular power of (2) is based on the

fact that it has always a single execution time. By the unconditionally execution

of both expressions, the problem of determining the worst-case behaviour of

the conditional becomes superflous. Thus, this approach offers exactly what is

needed for an adequate and easy code prediction.

3.3.1.1 Issues on the Constant-Time Conditional Expression

For the implementation of a correct constant-time conditional expression there

are still certain challenges that have to be overcome when trying to build such a

construct that ensures that the conditions, explained in the section before, hold

for any case. The attention here lies particularly on the branch contained in the

constant-time conditional operator, which occurs right before the result of the

overall conditional is returned. Such a branch is of great importance due to the

following reasons:

Even if the operations of the two alternatives in the constant-time conditional ex-

pression would be equal, these two alternatives could result in different execution

times due to the remaining conditional branching statement which still needs to

select the final result. This may happen because of the following reasons, de-

scribed in [3]:

• First of all, the time needed for the branching itself may differ, depending

on which alternative was selected. For instance, in a piplelined CPU, the

pipeline may stall on a jump when executing the first alternative while no

stall occurs if the second one gets executed.

• Furthermore, there is the problem with computers having an instruction

cache. The executions of the two alternative instructions of a branch may

leave the cache in different states. Since different cache states potentially
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influence the execution times of instructions, an exact prediction of the

execution time becomes impossible.

In fact, the first problem could be solved by stuffing the shorter alternative for

instance with NOP instructions in order to obtain both alternatives with an equal

execution time. In order to achieve this, detailed knowledge about the timing of

the target system would be required, which is not always provided by the environ-

ment. Since the second problem also remains unsolved, the implementation of

the correct constant-time conditional expression does not seem to be as simple

as assumed.

3.3.2 The Conditional Move Instruction

The solution for overcoming these problems has to be established on a basic

level and is proposed in [3]. This solution avoids input-data dependent branches

at the instruction level and uses if-conversion [5] in order to translate input-data

dependent branches into sequential code. This is realized by using the condi-

tional move instruction which is implemented on almost every modern processor

(Motorola M-Core, Pentium P6, Alpha and some more). With this instruction,

an implementation of the constant-time conditional expression that satisfies the

conditions explained in the section before, is achievable.

The conditional move instruction has the following form:

————————————–

movCC destination, source

————————————–

The conditional move compares the condition code CC with the condition code

register. If it evaluates to true, the processor copies the contents of the source

register to the destination register. If it evaluates to false, the value of the

destination remains unchanged.

3.3.3 Converting Code into Single-Path Code

In the following sections we want to give a brief overview of a method which

applies this instruction in general in order to achieve single-path code. Further-

more, we want to illustrate some basic techniques in order to bypass the issues

regarding single-path code of usual programming constructs.
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3.3.3.1 Converting Conditional Code

As already mentioned several processors are able to implement the constant

time conditional operator by using conditional move instructions contained in

their instruction set, with the objective of performing an if-conversion. A piece

of code should show the implementation for the ARM7_TDMI processor [15]

which is also used for our experiments, treated in further sections. We want to

note at this point that there are different implementations possible since every

hardware might have a sligthly different conditional move instruction set, but the

basic concept remains the same. The pseudo-code of both, the high-level and

low-level language, is shown in the following code Listing 3.1.

Listing 3.1: Branching statement with sequential code of an if-conversion

¨ ¥

temp1 := exp1 ;
i f cond temp2 := exp2 ;
then resu l t := exp1 ; cmp cond 0;
else resu l t := exp2 ; movgt resu l t temp1;

moveq resu l t temp2;
§ ¦

The left side of the illustration shows the usual branching statement of an

if-condition. On the right side, the pseudo-code of the instruction level for per-

forming a translation into single-path code is given. At first, the expressions exp1

and exp2 are evaluated. Both results are stored in the registers temp1 respec-

tively temp2. Subsequently, the condition cond is evaluated and used within a

compare instruction. Depending on the variable cond the compare instruction is

either stated to be equal (in the case of cond = 0) or "greater than" (in the case

of cond = 1). Thus, exactly one of the two following movCC instructions can get

executed and the register result finally holds the intended value, which is either

the content of temp1 or temp2.

The implementation of such a conditional assignment has no branches. Hence,

this makes it possible to translate any conditional code into a sequential form.

The code shown on the right side of the figure above has a single and thus

predictable execution time.

Typically, there might be more than one variable contained in the program

code which needs to be assigned to different values depending on the condition

before. Therefore, we have to take into account every input variable of the

two alternatives of the branch. According to [16], we can describe this more

formally by assuming that each branch uses the input variables v1‘,...,vm‘ in order

to compute the values for the final variables v1, ...vn. This is illustrated in the

following parallel code of Listing 3.2
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Listing 3.2: General translation of branching statements - if - conversion

¨ ¥

( t1 , . . , tn ) : = A1( v1 ’ , . . , vm ’ )
i f cond ( t1 ’ , . . , tn ’ ) : = A2( v1 ’ , . . , vm ’ )
then ( v1 , . . , vn ) : = A1( v1 ’ , . . , vm ’ ) cond :
else ( v1 , . . , vn ) : = A2( v1 ’ , . . , vm ’ ) ( v1 , . . , vn ) : = ( t1 , . . , tn )

not cond :
( v1 , . . , vn ) : = ( t1 ’ , . . , tn ’ )

§ ¦

In the first two lines of the code on the right side we see the two assignments

resulting from the computation of the input values v1‘,...,vm‘. For both alterna-

tives of the branch, the results of this computation or rather the evaluation are

stored in tupels of temporary variables t1‘,...,tn‘ respectively t1,...,tn. The last

two lines are assignments of tupels, representing a number of conditional move

operations. Depending on the condition cond the conditional move operations

are used to assign either the one or the other tupel of computed results which

are stored in the temporary variables, to the final variables v1, ...vn.

3.3.3.2 Converting Nested Conditional Code

Another requirement which is necessary in order to achieve sequential code is

to get rid of nested if-statements. The main idea is to combine the enclosing

condition with the nested condition inside. For this kind of translation, attention

has to be paid to the fact that the enclosing condition must not get violated by

potential statements before reaching the nested condition. This can be achieved

by temporarily storing the value of the enclosing condition so that it can be

reused if the value has changed. After doing the translation, the resulting entire

condition can be translated into sequential code by applying the principles of if-

conversion as described above. The following comparison in Listing 3.3 shows

how such statements can be translated.

Listing 3.3: Translation of nested if statements

¨ ¥

. . . .

. . . . . .
i f cond_A { i f cond_A

then [ body C] then [ body C]
i f cond_B

then [ body D] i f cond_A and cond_B
} then [ body D]
. . . . . .
. . . .

§ ¦
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3.3.3.3 Translation of Loops

The usage of loops is another familiar construct which helps to implement the

functionality of the desired behavior of a program or an algorithm. Usually loops

are implemented in a way that the number of iterations depends on the given

input-data and thus may vary highly.

Naturally, the way to avoid variations of the number of iterations would be to

change the loop into a simple counting loop with a constant iteration count. This

is done by setting the iteration count of the new loop to the maximum interation

count of the original loop. Furthermore, the termination condition of the old loop

is used to place a new branching statement inside, with the objective to ensure

the termination of the new loop. This is done by introducing a new variable end

which is set before the loop body. This variable stores the information about the

fact if the original loop would still execute the loop body or would have already

terminated.

Finally, the entire loop can perform in constant time since the generated con-

ditional statement gets transformed into a constant-time conditional assignment.

This is shown in the following Listing 3.4 where the original loop and the new loop

are translated to single-path code.

Listing 3.4: Translation of Loops

¨ ¥

end = fa l se ;
for i :=1 to k do {

while cond do max k times { i f not cond
[ body of stmts ] ; then end = true ;

} i f not end
then [ body of stmts ] ;

}
§ ¦

For the occurrence of nested loops which are enclosed by some if-condition

we can apply the same strategy as described already in the section before. This

consists in generating the branching statement by combining the conditions for

termination of the loop and the one emerging from outside. The following Listing

3.5 shows the translation of a combination of an if-condition with the nested loop

inside.
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Listing 3.5: Translation of Loops and Nested Conditions

¨ ¥

end = fa l se ;
i f cond_A { for i :=1 to k do {

. . i f not cond_B
while cond_B do max k times { then end = true ;

[ body of stmts ] ; i f cond_A and not end
} then [ body of stmts ] ;

} }
§ ¦

3.3.3.4 Applicability of Conversions

The transformations as explained in the Sections 3.3.3.1 to Section 3.3.3.3 are

not always suitable due to the following reason. When applying the described

transformations to real-time code, the conversions of if-conditions and loops may

yield temporal predictability at a very high cost in terms of execution time. Thus,

this methodology is more a demonstration of the transformation than a generally

applicable approach and can be only used if the emerging costs are arguable,

which depends on the nature of the program respectively the algorithm.

Summing up, we can state that it is not our intention to simply use this kind

of transformations in order to generate temporally predictable code from arbi-

trary real-time programs. It is rather more essential to generate new algorithms

with no or minimal input-data dependent branches, in order to satisfy both, the

requirement of temporal predictability as well as an adequate performance. Only

when using such new optimized program code, the systematic use of such trans-

formations would make sense and might help to overcome the remaining issues

causing the undesired unpredictability.
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3.3.4 Exemplification for comparison-based Algorithms

In the following section we want to outline, how the theory introduced in the

Sections 3.3.1 to Section 3.3.3.4 can be applied on building new single-path ori-

ented algorithms. Therefore, we are going to provide several examples which

should illustrate the main differences between both, the traditional and the

WCET-oriented alternatives.

3.3.4.1 Remarks on Instructions and the Compiler

• First of all, we want to note that for the algorithms in the following sec-

tions we assume that the effect of the standard conditional assignment

operator equals the behavior of the constant-time conditional expression as

introduced in section 3.3.1. In order to keep this in our mind, we use the

already introduced "#" operator instead of the standard C conditional oper-

ator ("?" ). Despite the fact it is rather a model than a real implementation

it should basically help us to illustrate the notion of the algorithms.

• Furthermore, we want to advise the reader to pay attention to another

crucial assumptions which are strongly required in order to implement the

desired behaviour of the upcoming algorithms. Since the instruction set

of the used hardware is not always identical and since the behaviour of

compilers may vary due to optimization patterns , it cannot be assured that

algorithms, after being compiled, will maintain their single-path character

as well as their uniform execution time.

Since our single-path approach is based on the fact that instructions can be

executed conditionally, we want to point out two different examples which

depend on the underlying target hardware (processor). If we assume that

the conditional move instruction does not perform in constant time since

its execution time depends on the state of the conditional flag, we would

need a compiler which translates the source code in a way so that both

properties, the single execution path as well as the constant execution

time, can be achieved.

The following pseudo code, adapted from the Listing 3.1 in Section 3.3.3.1,

shows such an example, where individual parts might be dropped by com-

piler optimizations and therefore might cause different execution times due

to a non-constant conditional move instruction. This is because the condi-

tional move instruction produces different execution times which depends
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on the fact if the conditional flag of the previous compare condition has

been set either to true or false. is

Listing 3.6: Branching statement illustrating the code(1)

¨ ¥

temp1 := exp1 ;
i f cond ( temp2 := resu l t ; )
then resu l t := exp1 ; cmp cond 0;
else resu l t := resu l t ; movneq resu l t temp1;

(moveq resu l t temp2 ; )
§ ¦

Hence, there is not only the request for an suitable instruction set, sup-

ported by the target architecture, but also the need for an appropriate

compiler which is able to maintain the desired properties.

The pseudo code given in the following Listing 3.7 demonstrates how the

same source code can be translated to low-level code if the conditional move

instructions of the processor has a constant execution time. In the first of

the two possible cases the instruction executes normally if the conditional

flag of the compare instruction has been set to true. In the other case

the conditional flag has been set to false and the conditional move is just

executed as a NOP (no operation). At the ARM7 processor, which will be

also used for our experiments in Section 4.3, both options of the execution

always need one single computation cycle.

Listing 3.7: Branching statement illustrating the code(2)

¨ ¥

i f cond temp1 := exp1 ;
then resu l t := exp1 ; cmp cond 0;

movgt resu l t temp1;
§ ¦

The last example represents the main property for our single-path approach

and will also show up in similar form when presenting the upcoming algo-

rithms and their low-level code in Section A.1.

3.3.4.2 FindFirst Algorithm

For the beginning, we want to have a look on a very basic algorithm called

FindFirst. The task of this algorithm is to return the index of the first occurrence

of a given key value. The list of values is unsorted and given by an array. The
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traditional method of this algorithm, shown in the Listing 3.8, starts from the

first element of the given array and compares then the given key to each element

contained in the list. As soon as a match between the compared elements

occurs, the algorithm returns the current array index and terminates.

Listing 3.8: Traditional Version of FindFirst

1 static int findfirst1(int *keys , int size , int key)
2 {
3 int i;
4 int position = -1;
5 for(i=0; i<=size -1; i++) /* max. iterations: SIZE */
6 {
7 if (keys[i] == key)
8 {
9 position = i;

10 break;
11 }
12 }
13 return position;
14 }

The WCET-oriented variant of the FindFirst algorithm, shown in the Listing

3.9, starts from the last element and traverses, unlike the traditional algorithm,

the complete array. Whenever it encounters an element which equals the given

key, the index of this element gets stored in a variable. Because of the fact that

the searched key can be contained in the array more than once, the variable

potentially gets overwritten several times. Since the direction of traversing hap-

pens backwards, the returned index is indeed the index of the first element which

matches the key.

Listing 3.9: WCET-oriented Version of FindFirst

1 static int findfirst2(int *keys , int size , int key)
2 {
3 int i;
4 int position = -1;
5 for(i=size -1; i>=0; i--) /* max. iterations: SIZE */
6 {
7 position = ((keys[i] == key) # i : position );
8 }
9 return position;

10 }

Even though this example is quite simple, it perfectly shows the main steps

required in order to achieve single-path code. Since we will go through several

examples for adaptions of algorithms we want to accent the observed proper-

ties, which we simply derive by the given algorithm.
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Sequence of required steps in order to achieve WCET-oriented respectively

single-path code:

• First of all, the idea of the algorithm has to be changed (that is, traversing

backwards with overwriting).

• As a consequence, the number of iterations of the loop can be fixed to a

constant value (the maximum) and the break is removed out of the loop

body.

• Finally, the if-conversion was applied and hence the if-statement has been

replaced by a conditional expression. The latter one is a key property for

achieving single-path code and ensures in that case that either the variable

position gets replaced by some new value contained in variable i or that it

just gets overwritten by itself.

The method of unintuitive overwriting of variables is an important key feature

when modifying certain algorithms and will also guide us through further

single-path code examples.

3.3.4.3 Bubble Sort Algorithm

Another example showing how the conditional assignment can be used in order to

achieve single-path code with predictable execution time is given by a modification

of the well-known Bubble Sort algorithm.

Bubble Sort is a very basic sorting algorithm which steps through the list to

be sorted, comparing each pair of adjacent items and swapping them if they

are not in the correct order. This is repeated until all possible comparisons

are evaluated and therefore all required swaps are performed. Finally the list is

sorted.

Bubble Sort has both worst-case and average complexity O(n2), whereas n is

the number of items being sorted. Although there exist other sorting algorithms

with better worst-case or average complexity, the advantage that bubble sort

has over most other implementations, even QuickSort, is that it is able to detect

that the list is already sorted. However, for our purpose this advantage is not

relevant at all, but nevertheless this algorithm provides a very suitable structure

for our exemplifications. The traditional method of this algorithm is shown in

Listing 3.10.
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Listing 3.10: Traditional Version of Bubble Sort

1 static void bubble1(int a[])
2 {
3 int i, j, t;
4 for(i=SIZE -1; i>0; i--)
5 {
6 for(j=1; j<=i; j++)
7 {
8 if (a[j-1] > a[j])
9 {

10 t = a[j];
11 a[j] = a[j-1];
12 a[j-1] = t;
13 }
14 }
15 }
16 }

Depending on the results of the branching condition, the iteration of the inner

loop takes different times, which results in an execution-time variability. Hence,

the control flow of this traditional algorithm strongly depends on the input-data.

In order to show how this problem can be overcome, we want to demonstrate

the WCET-oriented variant of the Bubble Sort algorithm, introduced in [3] where

we can see the changes made, even though the basic idea of the algorithm did

not change. While the traditional algorithm still suffers from the execution-time

variability due to the branching statement within the inner loop body, the modified

algorithm avoids this problem by using two non-jumping conditional assignment

operations. This algorithm is shown in the Listing 3.11.

Listing 3.11: Single-path Version of Bubble Sort

1 static void bubble2(int a[])
2 {
3 int i, j, s, t;
4 for(i=SIZE -1; i>0; i--)
5 {
6 for(j=1; j<=i; j++)
7 {
8 s = a[j-1];
9 t = a[j];

10 a[j-1] = ((s<=t) # s : t);
11 a[j] = ((s>t) # s : t);
12 }
13 }
14 }

The sole difference between those two algorithms is basically the way of swap-

ping between the elements contained in the array. The single-path version is

doing that in a way that elements being compared either get swapped or just

overwritten by themselves. This is achieved by using a second variable in order
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to also store the second value which is compared. Thus, it is possible to simply

overwrite both values when indicated by the two conditions in line 10 and 11 of

the given listing above.

Summing up, the if-statement of the traditional variant has been replaced by

two constant-time conditional expressions which are implemented by four condi-

tional move instructions and thus the implementation is totally free of conditional

branches in the control flow.

3.3.4.4 Binary Search Algorithm

The next suitable algorithm which has quite a lot of potential to be adapted

according to our requirmentes is the well-known Binary Search algorithm. This

is an algorithm for locating the position of an element in a sorted list which finds

the target value in logarithmic time. It uses a method to reduce the number of

elements needed to be explored every round by a factor of two and therefore

has both worst-case as well as average complexity O(log n).

The first algorithm we are going to present here is one of the most basic

and traditional variants, which is quite similar to iterative variants used in various

standard libraries. This algorithm is shown in the following Listing 3.12.

Listing 3.12: Traditional Version of Binary Sort

1 static int bs_trad(int*a, int size , int key)
2 {
3 int left = 0;
4 int right = size - 1;
5 int idx;
6 do
7 {
8 idx = (right + left) >> 1;
9 if (a[idx] == key)

10 return idx;
11 else if (a[idx] < key)
12 left = idx+1;
13 else
14 right = idx -1;
15 }
16 while (right >= left);
17 return -1;
18 }

The strategy of binary search is quite intuitive and performs as follows. It

starts by checking the middle, and continuously eliminates the half of the list from

consideration in order to perform the search only on the remaining half. There

are lots of different implementations of Binary Search which differ regarding their

return value and are either recursive or iterative variants and also may vary in
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their structure concerning the number of comparisons per iteration. They also

differ regarding the fact whether the result is returned before or after the whole

data has been explored.

If we examine the given variant, we notice that this algorithm suffers from

several input dependecies. Due to the termination condition of the loop the algo-

rithm has a variable iteration count. Furthermore, nested if-then-else constructs

are contained in the algorithm and influence the control flow of the program-code

in different ways.

In contrast, the WCET-oriented variant without any input dependencies, intro-

duced in [4], is shown in Listing 3.13. In order to overcome the issues contained

in the traditional variant, we note at this point that the main steps, introduced

in section 3.3.4.2 , have again been performed in order to achieve an adapted

variant of the binary sort algorithm.

Listing 3.13: WCET-oriented Version of Binary Sort

1 static int bs_singlep(int*keys , int size , int key)
2 {
3 int left = 0;
4 int right = size -1;
5 int idx = (right + left) >> 1;
6 for(int inc = size; inc > 0; inc >>= 1)
7 {
8 right = (key < keys[idx] # idx -1 : right );
9 left = (key > keys[idx] # idx+1 : left);

10 idx = (right + left) >> 1;
11 }
12 return (keys[idx] == key) ? idx : -1;
13 }

In order to be able to reproduce the differences between these two variants,

we want to highlight some details of the adaption given in Listing 3.13:

• If we compare the two algorithms of Listing 3.12 and Listing 3.13 we can

see the modification regarding the direct comparison to the searched key.

The WCET-oriented variant processes the whole scenario and determines

only at the end whether the key is contained in the sorted list. As a conse-

quence, the nested if-condition can be dissolved.

• Since the WCET-oriented variant is now supposed to process the whole ar-

ray, due to the changes made on the if-conditions, the number of iterations

of the loop can be fixed to the maximum.

• Finally, applying the paradigm of if-conversion which is denoted by the already

introduced "#" operator, helps us to overcome the last problems of data
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dependencies. Again, this is achieved by overwriting the variable, which is

either right or left, depending on which side was chosen to be searched

next.

• The basic idea of the adapted algorithm is based on the fact that considering

Line 8-9 in the Listing, the values of the variables right and left remain the

same if the searched key has already been found before. As a consequence,

the value of variable idx in Line 10 will remain the same up to the point

at which the program ends. In order to implement the return value for

not finding the element "-1", the principle of a constant-time conditional

expression is applied again and by doing so we achieve a single-path code

showing the same functionality as the traditional variant.

3.3.4.5 Multi-Byte Counter

The last algorithm of that algorithm-class we want to present is the so-called

Multi-Byte Counter. This algorithm increments a counter that consists of an array

of single bytes. The counter increments by starting from the least significant

element and iterates as long as there is an overflow to higher-order parts of the

counter. Both algorithms which we are going to present in the following, are

introduced in [6].

The functionality of this algorithm is quite intuitve and is basically implemented

by one for-loop which iterates over all bytes of the given counter array as long

as an overflow occurs at the current array position. The first time there is no

overflow the loop terminates, which obviously violates our attempts for a single

execution path. The behavior of this algorithm can be examined in the following

Listing 3.14.

Listing 3.14: Traditional Version of Multi-Byte Counter

1 static void inc_counter_trad(COUNTER counter)
2 {
3 int idx;
4 for(idx=0; idx <COUNTERSIZE; idx++)
5 {
6 unsigned char tmp;
7 tmp = counter[idx];
8 counter[idx] = tmp +1;
9 if (counter[idx] > 0)

10 break;
11 }
12 }

A reasonable alternative to the previous algorithm that fulfills our needs for

single-path code, is illustrated in the following Listing 3.15. The main difference
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here lies in the fact that the value used for incrementing is defined by a variable.

The variable gets set to zero as soon as no overflow occurs. Since the value

zero of the variable cannot cause an effect anymore, the loop can pass through

completely.

Listing 3.15: Single Path Version of Multi-Byte Counter

1 static void inc_counter_sp(COUNTER counter)
2 {
3 int idx , inc_val;
4 inc_val = 1;
5 for(idx =0; idx <COUNTERSIZE; idx++)
6 {
7 unsigned char tmp;
8 tmp = counter[idx];
9 counter[idx] = tmp + inc_val;

10 if (counter[idx] > 0)
11 inc_val = 0;
12 }
13 }

3.3.5 WCET Analysis with the Single Path Approach

The impacts for WCET analysis when using a single-path approach are very ben-

eficial regarding the costs and effort. If we consider usual approches of WCET

analysis, we recognize the following: First of all, path analysis becomes needless

since the execution path of any execution with any given input data will always

result in the same unique execution path. Furthermore, usage of complex hard-

ware timing models is not necessary anymore, a fact which makes WCET analy-

sis much easier, especially because of the fact that building such timing models

requires a huge effort. The main reason for performing static analysis using

such complex timing models is based upon the fact that a measurement-based

analysis was not feasible, since the number of possible execution paths was sim-

ply too high. But when having only one execution path, measurements become

possible again and then the WCET can be obtained by simply measuring the time

of the single execution path.

3.4 Classification of Algorithms

The algorithms, presented in Section 3.4.1.1 are obviously part of a special cat-

egory regarding their complexity and character. More precisely, these kind of

algorithms are in the class of sorting and search algorithms of the superclass
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of combinatorial algorithms. Almost every algorithm of the class of sorting al-

gorithms is a comparison sort algorithm, since only comparisons are used to

operate on the elements. The same holds for several algorithms of the class of

search algorithms.

Applying the single-path approach to this kind of comparison-based algorithms

is actually quite unproblematic, under the condition that an appropriate single-

path solution for the given algorithm can be found.

But in contrast to that, there are many other classes of algorithms con-

tained in different superclasses, comprising several operations which make the

implementation of the exemplified single-path approach partly impossible. This

affects basically mathematical operations (that is basic arithmetics), such as

multiplication, division or mod-division and, moreover, some more sophisticated

operations, based on these more basic operations.

In the following section and especially in Section 3.5.3 we illustrate some

alternative ways for some numeric problems, respectively algorithms in order to

maintain the property of uniform execution times and single-path code.

3.4.1 Achieving Single-Path Code by applying LookUp Tables

Intuitively we would say that we could bypass the problem of varying computation

times if we preprocess all possible calculations and store the results somewhere,

in order to be able to retrieve them in constant time. Since it is generally not

possible to compute and store the results for the complete and possibly infinite

set of input data, such an approach is only suitable if the domain of the input

set can be limited to a specific bound. Therefore, we want to introduce the well-

known technique of LookUp Tables which allows us to store the data needed in

order to process a given request for a particular problem respectively algorithm.

Before the arising of computers, printed lookup tables of values were used by

people to speed up hand calculations of complex functions, such as in trigonom-

etry, logarithms, and statistical density functions. In computer science, a lookup

table is a data structure, usually an array that is often used to replace runtime

computations with a simpler array indexing operation. This technique is typically

used for achieving significant savings of processing time. For our concerns we

are primarily focussed on uniform execution times respectively on single-path

code.
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3.4.1.1 Population Count

A famous example for the usage of a look-up table is the problem of Population

Count, also known as Hamming Weight. It is a discrete problem, counting the

number of bits which are set to ’1’ in a (binary) number. The following Listing

3.16 shows the basic example of C code, designed to count the number of bits

set to ’1’.

Listing 3.16: Counting ’1’ bits in a series of bytes

1 int count_ones(unsigned int x)
2 {
3 int result = 0;
4 while (x != 0)
5 result++, x = x & (x-1);
6 return result;
7 }

The presented algorithm can take a varying number of cycles depending on the

input given to that algorithm. However, there exists a faster but uniform solution,

using a trivial hash function table lookup, which is shown in the following Listing

3.17

Listing 3.17: Counting ’1’ bits with Look-up Table

1 /* Code for ’int’ 32-bits wide */
2 int count_ones(unsigned int x)
3 {
4 return bits_set[ x & 255] +
5 bits_set [(x >> 8) & 255] +
6 bits_set [(x >> 16) & 255] +
7 bits_set [(x >> 24) & 255];
8 }

Here the static table bits_set with 256 entries is constructed. The table

provides for a certain input-value the number of bits which are set to one in

order to represent that value. Then this table can be used to find the number of

ones in each byte of the integer, using a simple look-up function for each of its

bytes and finally accumulate the sum of them.

3.4.2 Single-Path Code with Arithmetic Influences

If we consider the problems mentioned in Section 3.4, we will notice that there

must be plenty of algorithms which are suitable for adapting them to single-

path code, but on the other hand have some additional functions which are not

solvable with the methods and strategies presented in Section 3.3.3.
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Therefore, we are going to discuss the problem of the Greatest Common Divisor,

which is a good example of an algorithm which does not fit too well for single-

path code. We want to address two different algorithms, which are first of all

the standard implementation of Euclid’s Algorithm and, secondly, the binary GCD

algorithm, also known as Stein’s algorithm.

3.4.2.1 Standard (Euclid’s) GCD Algorithm

The Euclidean algorithm, given in Listing 3.18, is one of the most efficient and

most used algorithms for computing the greatest common divisor. Nevertheless,

the algorithm is not well suited for our single-path programming style. This is

because of the fact that the number of loop iterations depends on the size of the

input numbers. If we fix the number of loop iterations to a certain high bound

in order to cover a huge range of input data, the problem of the modulo-division

remains. The problem in particular concerns the fact that hardware often does

not support the division operation whereas the available software-division has

variable execution times.

Listing 3.18: Standard implementation of GCD

1 int gcd(int a, int b)
2 {
3 if(a < 0) a = -a;
4 if(b < 0) b = -b;
5 while( b > 0)
6 {
7 int temp = a;
8 a = b;
9 b = temp % b;

10 }
11 return a;
12 }

In order to discuss the number of maximal loop iterations we want to consider

the worst case situation which occurs when the input paramters a and b are two

adjacent Fibonacci numbers, because in that case the remainders follow the

Fibonacci sequence until zero is obtained. This is due to the relation between the

nature of Fibonacci numbers and the modulo-division.

We want to consider adjacent Fibonacci numbers (starting with F0 = 0) that

we use for the single-path algorithm, given in the Listing 3.19. The given num-

bers are within a range, until the upper bound for signed integers (231 −1). This

would include numbers up to (and including) the 46th Fibonacci number.
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Listing 3.19: Single-path variant of GCD

1 int gcd_sp(int a, int b, int n)
2 {
3 a = a < 0 ? -a : a;
4 b = b < 0 ? -b : b;
5 int temp;
6 for(int i = 0; i < n; i++)
7 {
8 temp = (b > 0) ? a : 0;
9 a = (b > 0) ? b : a;

10 b = temp % b; /* optionally Soft -Mod -Div. */
11 }
12 return a;
13 }

In our experiments, treated in Section 4, we will point out in all details the

relation between the input data and the required number of loop iterations.

3.4.2.2 Binary GCD Algorithm

In contrast to the ancient Euclidean algorithm the use of the binary GCD algorithm

has the advantage that the (modulo)division can be replaced by shifts. This is

quite beneficial for embedded platforms which often do not have direct processor

support for division. The algorithm was first published by the Israeli physicist and

programmer Josef Stein in 1967, but has been probably already known in first-

century in China.

The algorithm, given in Listing 3.20, solves the problem of finding the GCD by

repeatedly applying the following rules:

1. Since everything divides zero and v is the largest number that divides v,

gcd(0, v) = v holds. Similarly for gcd(u,0) = u. Although gcd(0,0) is not

defined, it is convenient to define gcd(0,0) = 0.

2. If u and v are both even, then gcd(u, v) = 2gcd(u/2, v/2) holds since 2 is a

common divisor. Additionally, this step yields to the variable k which is the

number of common factors of 2.

3. If u is even and v is odd, then gcd(u, v) = gcd(u/2, v) holds since 2 is not a

common divisor. For inverted parity of u and v naturally gcd(u, v) = gcd(u, v/2)

holds.

4. If u and v are both odd, and v ≥ u, then gcd(v, u) = gcd((v − u)/2, u) holds.

If both are odd and v < u, then gcd(v, u) = gcd((u − v)/2, v) holds. Obviously,

a division by 2 can only result in an integer since the difference of two odd

numbers must be always even.
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5. By repeating steps 3-4 until v = u or v = 0 the algorithm yields the result

which is 2k ∗ u (where variable k is determined by the second step)

Listing 3.20: Binaray GCD Algorithm

1 /* Function to determine number to be even or odd */
2 #define EVEN(x) ((x&0x1)==0)
3

4 int gcd_binary(int a, int b)
5 {
6 unsigned int u = (a < 0) ? (-a) : a;
7 unsigned int v = (b < 0) ? (-b) : b;
8 int k = 0;
9 /* GCD (0,x) := x */

10 if(u == 0 || v == 0) return (u | v);
11

12 while(EVEN(u)){
13 u = u >> 1;
14 if(EVEN(v)){
15 v = v >> 1;
16 k++;
17 }
18 }
19 /* From here on, u is always odd. */
20 while (v > 0) {
21 while(EVEN(v)) v = v >> 1;
22 if(u < v) v = v - u;
23 else {
24 int diff = u - v;
25 u = v;
26 v = diff;
27 }
28 }
29 return u << k; /* u*(2^k) */
30 }

The following algorithm, given in Listing 3.21, shows the transformated single-

path variant of the binary GCD algorithm. Here the number of loop iterations is

bounded by values which restrict the range of the inputs to 32-bit signed integers.

Listing 3.21: Binary Single-path variant

1 int gcd_binary_sp(int a, int b)
2 {
3 unsigned int u = (a < 0) ? (-a) : a;
4 unsigned int v = (b < 0) ? (-b) : b;
5 int k = 0;
6 /* GCD (0,x) := x */
7 if(u == 0 || v == 0) { u = v = (u | v);}
8 int i;
9

10 for ( i = 0; i < 31; i++){
11 int even_u = (u & 0x1) == 0;
12 int even_v = (v & 0x1) == 0;
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13 if (even_u) u = u >> 1;
14 if (even_v) v = v >> 1;
15 if (even_u && even_v) k++;
16 }
17 for (i = 0; i < 60; ++i) {
18 int diff = u - v;
19 if ((v & 0x1) && diff < 0) v = -diff;
20 if ((v & 0x1) && diff >= 0) u = v;
21 if ((v & 0x1) && diff >= 0) v = diff;
22 v = v >> 1;
23 }
24 return u << k; /* u*(2^k) */
25 }

3.5 Trigonometric Functions

In mathematics, the trigonometric functions are functions of an angle and used

to relate the angles of the triangle to the lengths of its sides. Trigonometric

functions are essential when modeling periodic phenomena and are also present

among many other applications. The most familiar ones are the sinus, cosine

and tangent functions.

For now, we want to concentrate on the cosine since it is an symmetric

function and which is mostly used to derive the results of all other trigonometric

functions. Later on, we are going to show a proper calculation for the consine

provided by an example using look-up tables in order to bypass the problem of

varying execution times.

3.5.1 Iterative Approximation using Tayler Series

At first, we want to show the common implementation where Taylor Series are

used to approximate the trigonometric functions. There are also other iterative

algorithms such as CORDIC [17] with no need of multiplication operations, which

are thus more suitable for their implementation in hardware.

Since we are discussing software implementations, we will briefly illustrate the

Taylor Series. The following formula 3.5.1 shows the definition of the Taylor Se-

ries for the cosine approximation. In order to reach full double precision (floating

point format), a Taylor polynom of degree 14 would be required [18]. Consider-

ing the given formula, there remain only the 7 coefficients of even powers, which

need to be calculated.
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cos(x) ≈

∞∑

n=0
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=
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−

x2

(2)!
+

x4

(4)!
− .. (3.5.1)

An example for an approximate calculation of the cosine with an accurateness

up to 6 decimals is shown in the following Listing 3.22. It illustrates how the the-

ory of Taylor Series can be used for calculating the cosine for real numbers of x

and it should also exemplify the basic mathematical concept and their complexity

of Taylor series, used in standard C-libraries such as math.c.

Obviously, implementations like this one, using arithmetic operations in order

to calculate the result, suffer from varying execution times, since the complexity

of processing some arbitrary input is not constant.

Listing 3.22: Taylor Series - cosine approximation

1 float cos(float a)
2 {
3 /* Taylor series for cosinus calculation:
4 cos(x) = (x^0/0!) -(x^2/2!)+(x^4/4!) -(x^6/6!)+... */
5

6 float i = 0.0;
7 i = (pow(a ,0)/1) -
8 (pow(a ,2)/2) +
9 (pow(a ,4)/24) -

10 (pow(a ,6)/720) +
11 (pow(a ,8)/40320) -
12 (pow(a ,10)/3628800) +
13 (pow(a ,12)/479001600);
14 return i;
15 }

3.5.2 Approximation using Lookup Tables

In order to get rid of the problem of varying execution times, we propose the well-

known approach of look-up tables, introduced in Section 3.4.1, in combination

with interpolation. We could abandon the interpolation if the amount of data-

storage was boundless but we will rather have to cope with limited space for

data of the lookup table which makes the use of interpolation inevitable. Although

there are different types of interpolation, we apply a basic linear interpolation

which fulfils our purpose of demonstrating an alternative approach.

The following code in Listing 3.23 shows the pure code containing the math-

ematical approach for our calculations which we are finally going to use for our

experiments. The approach comprises fixed-point arithmetic in order to use the
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data type of Integer and furthermore includes several functions for multiplica-

tion, division and modulo-division which are written in a single-path manner. The

following variant is designed only for a range of values between 0 and π
2
. In our

experiments, treated in Section 4, we will show some other adaptions of that

algorithm which support an extended range of input-values.

Listing 3.23: Algorithm using LookupTable for cosine calculation

1 int cos_(int a)
2 {
3 volatile int y, y1 , y2;
4 volatile int x, x1 , x2, m_, m__ , comma;
5

6 /* divide through 1024 */
7 x = (a >> 10);
8 /* modulo function with dividend a and divisor 1024 */
9 m_ = mod_1024_SP(a);

10 /* multiplication function */
11 m__ = MUL_ (10000 , m_);
12 /* divide through 1024 for getting 4-digit comma */
13 comma = (m__ >> 10);
14

15 /* lookup -values for array (index) */
16 x1 = x;
17 x2 = x+1;
18 y1 = LUp_table[x1];
19 y2 = LUp_table[x2];
20

21 /* Interpolation function containing MUL_ and DIV_ */
22 y = ppoint(y1,y2 ,comma);
23

24 return y;
25 }

The algorithm starts basically with evaluating the first index-value of the lookup

table, which is x1, by performing an integer division. That means that the input

value a - a fixed point number - is divided by 1024 (line 7). Naturally, we know

that the real value which needs to be calculated has to be somewhere between

the retrieved values of LUp_table[x1] and LUp_table[x2] (lines 18-19). In order

to determine the decimal places (comma) of the division, we need to perform

a modulo-division with a subsequent multiplication and division (lines 9, 11 and

13). The value can finally be used to call the interpolation function (line 22) which

returns the approximate value for the desired input value.

The function shown in Listing 3.24, calculates the real value y, which lies

between the first two parameters y1 and y2. At the beginning, the function

evaluates if the desired value resides within an increasing or decreasing section

of the curve, which is recorded by the variable course. The third parameter x

is used to determine the relative distance between y and y1, denoted by y_dist
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(line 12 and 13). The latter is finally either added to y1 or substracted from it,

depending on the value of the variable course (line 15 - 17).

Listing 3.24: Linear Interpolation Function

1 int ppoint(int y1 , int y2, int x)
2 {
3 volatile int course , y, e1, e2;
4 volatile uint32t y_ , y_dist;
5 volatile int dist;
6

7 course = y1 - y2;
8 e1 = y1 - y2;
9 e2 = y2 - y1;

10 dist = (course > 0) ? e1 : e2;
11

12 y_ = MUL_(dist ,x);
13 y_dist = udiv_SP(y_, 10000);
14

15 e1 = y1 - y_dist;
16 e2 = y1 + y_dist;
17 y = (course > 0) ? e1 : e2;
18

19 return y;
20 }

Even though the functions described in the Listings 3.23 and 3.24 are writ-

ten in a single-path manner, there remain several problems in the code that

need to be solved in order to achieve uniform computation times for given in-

put values. This includes the matters of arithmetic operations contained in both

functions, but also the issue of avoiding soft float libraries supporting the floating

point arithmetic, which is often used for such trigonometric calculations. Several

arithmetic algorithms and an alternative solution for floating point arithmetic are

presented in more detail in Section 3.5.3.

The code presented in Listing 3.23 uses an array containing the stored values

of the lookup table. The following pseudo code (Listing 3.25) shows how to

construct the table and furthermore gives information about the exact structure

and model chosen for the table.

Listing 3.25: Generation of LookUp-Table for cosine

¨ ¥

1 /∗ f i l l i n g tab le with cos−values for i n t e r v a l 0−PI/2 ∗/
2 double PR = 0.0559529096807444
3 double DTR = ( PI ∗ PR) / 180
4 double RTD = 1/DTR = 1024.00000000
5 double cos_value = 0.0
6 int i
7 int cosLUT[1609] /∗array s i ze of 1609∗/
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8

9 FOR LOOP with i = 0..1609
10 { /∗ ca lcu late cos values in steps of 1/17.872175 degree ∗/
11 cos_value = ( double ) cos ( i ∗ DTR) ;
12 /∗ converte to Q7.24 format and store ∗/
13 cosLUT [ i ] = ( int ) ( round ( cos_value ∗(2^24)) ) ;
14 }

§ ¦

The value 1024 of the variable ’RTD’ which is the reciprocal value of the used

variable ’DTR’ in line 11 demonstrates our lookup strategy that we use in our

algorithm in Listing 3.23. Considering this algorithm, we can see that the lookup

table is generated in a way that we are able to resolve our values contained in

the table (array) by simply dividing our input value through 1024. Since 1024 is

a power of two the division operation is realized by a ten bit shift to the right.

3.5.3 Strategies and Functions

This section describes some techniques of avoiding soft-float libraries and further-

more provides some numeric algorithms which are needed in order to substitute

the required arithmetic operations of the illustrated cosine function described in

the previous Section 3.5.2. Since the class of numeric algorithms contains the

classical arithmetic operations such as multiplication, division or modulo-division,

we are forced to deal with the variations of computing times. We are going

to show that it is possible to implement arithmetic functions which are partly

adapted to the properties of the given target hardware and which are able to

overcome the issues of variable execution times for different operations.

3.5.3.1 Fixed-point Arithmethic instead of Floating Point

Floating point units (FPU) are integrated into all the major microprocessors used

in standard PCs, so that one would assume fast floating point number calcula-

tions to be granted. But even now many DSPs (Digital Signal Processors) used

in embedded systems do not have an FPU. Since most low-end embedded sys-

tems still do not have a hardware FPU for performing floating point arithmetic,

C-compilers usually provide floating point support by soft-float libraries.

One major concern regarding single-path code and uniform computation times

is at any rate to get rid of useless complexity of source code respectively low-

level machine code. The use of such libraries makes the whole process not only

significantly slower but also yields an increasing complexity of low-level code which

might violate our needs of single-path code and uniform computation times. Due
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to the first reason, the reason of speed, embedded projects often require a ’no

floating point rule’ on their programmers, while the second issue concerns our

fundamental idea of predictable programming code.

Hence, in order to overcome this problem and generate program code that

satisfies our needs, we are forced to deal with fix-pointed arithmetics. We want

to show now how to convert a floating point number into a fixed-point number.

The formula for calculating the integer representation X of a float number x is

given in formula 3.5.2.

X = round(x ∗ 2n) (3.5.2)

The formula for converting the integer representation back to a float number

is given in formula 3.5.3.

x = X ∗ 2−n (3.5.3)

Depending on the number of available bits, there can be set different formats

for fixed-point numbers. If we assume to have 16 bit available, an common option

for a partitioning into integer places and decimal places would be the following:

• Considering our equations above - if we assumed n = 8 - this would imply an

assignment of 8 bit to the fractional part.

• Of the remaining 8 bit we can take at most 7 bit for representing the integer

part.

• The last bit remains for the sign.

• Such an partitioning would be denoted as Q7.8 format.

For our table-lookup algorithm presented in Listing 3.23 we chose two differ-

ent formats. Having 32 bit available, we chose the Q7.24 format for the values

stored in the lookup table to be Q7.24. The format for the input data (values to

be calculated) was chosen to be Q11.20. With the chosen formats we obtained

the desired accurray for the representation of the floating point decimal places

which was fixed to 7 places for the lookup-table values and to 4 places for the

value of the input data.

3.5.3.2 Single-path Multiplication Algorithm

The task of our algorithm is to execution times for multiplications for integer

numbers within a range of 32 bit. This means that the algorithm is able to
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take two arbitrary input values with a magnitude of 1 to 4 bytes (up to 32 bit),

multiplies them and returns the result within a constant computation time that

is a constant number of CPU cylces.

The multiplication algorithm is constructed according to the target hardware

used for our experiments. The construction is based on the fact that the un-

derlying processor operates with a 32 bit x 8 bit multiplier. The standard im-

plementation of the multiplication yields different execution times, depending on

the number of bytes used for the input values. Let us assume, for instance, two

values x and y and further assume that x is assigned to the larger 32 bit register

of the multiplier holding an arbitrary value of up to 32 bit. Then we can expect to

get an overhead of execution cycles, depending on the size of the second value y

which is assigned to the remaining smaller register.

The following implementation, given in Listing 3.26, overcomes this problem

by multiplying each single byte of the first value with each other byte of the second

value. Shifting the partial results to the correct position leads to the final result

of the entire multiplication.

Listing 3.26: Single-Path Multiplication Algorithm

1 int MUL_(int x, int y)
2 {
3 if(y < 0) { y=-y;x=-x; }
4 int y0 = y & 0xFF; /* 1. byte of y */
5 int y1 = (y>>8) & 0xFF; /* 2. byte of y */
6 int y2 = (y>>16) & 0xFF; /* 3. byte of y */
7 int y3 = (y>>24) & 0xFF; /* 4. byte of y */
8 int z = y0*x;
9

10 z += (y1*x) << 8;
11 z += (y2*x) << 16;
12 z += (y3*x) << 24;
13

14 return z;
15 }

3.5.3.3 Single-path Integer Division Algorithm

The main requirement of a single-path integer division is to achieve uniform exe-

cution cycles for the division of two integer numbers within a range of 32 bit. The

algorithm we are going to present here originates from Ian Kaplan and has been

adapted by Benedikt Huber in order to fulfill our request of constant execution

cycles. The original algorithm can be examined in Section A.2. The main refer-

ence, used by IanKaplan, for implementing the algorithm was the book Digital

ComputerArithmetic by J.F.Cavanagh [19].
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The presented algorithm is a so-called radix two division algorithm where one

computation step is needed for each binary digit. Besides, there are also radix

4, 8, 16 and even 256 algorithms, which are faster, but at the same time more

difficult to implement.

Listing 3.27: Single-Path Division Algorithm

1 #define LAST_BIT_INDEX 31
2 #define LAST_BIT_MASK 0x80000000
3 #define FULL_BIT_MASK 0xFFFFFFFF
4

5 uint32_t udiv_SP(uint32_t dividend , uint32_t divisor)
6 {
7 uint32_t t, flag = 0;
8 uint32_t q, bit;
9 int i;

10 uint32_t remainder = 0;
11 uint32_t quotient = 0;
12

13 for (i = 0; i < (LAST_BIT_INDEX +1); i++) {
14 bit = (dividend & LAST_BIT_MASK) >> LAST_BIT_INDEX;
15 remainder = (remainder << 1) | bit;
16 dividend = dividend << 1;
17 t = remainder - divisor;
18 q = !((t & LAST_BIT_MASK) >> LAST_BIT_INDEX );
19 if(remainder >= divisor) flag = FULL_BIT_MASK;
20 quotient = (quotient << 1) | (q & flag);
21 if (q & flag) remainder = t;
22 }
23 return quotient;
24 }

3.5.3.4 Single-path Integer Modulo Division Algorithm

Related to the integer division is the integer modulo division which comprises

the two algorithms introduced in Section 3.5.3.2 and Section 3.5.3.3. The

implementation is straightforward, which is why we do not go into more detail.

Listing 3.28: Single-Path Modulo Division Algorithm

1 uint32_t mod_SP(uint32_t dividend , uint32_t divisor)
2 {
3 volatile uint32_t q,qq,d = 0;
4 q = udiv_SP(dividend , divisor );
5 qq = MUL_(divisor ,q);
6

7 return dividend - qq;
8 }
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Chapter 4

Experiments

4.1 Overview

In this chapter we present the results of our experiments and we show how the

programming strategies and programming paradigms described in the sections

before can be applied on a selected embedded hardware. The experiments

contain several comparisons of the selected algorithms that have been described

in Section 3.3.

4.2 Basic Conditions

The test environment for our experiments comprises not only a particular man-

ner of programming style, but also a specific hardware in combination with com-

piler. Furthermore, we discuss the form and the dimension of the measured

execution time when evaluating several algorithms and also refer to additional

tools which are used within our experiments.

4.2.1 Test - Environment

The environment used for our experiments consists of an ARM7-TDMI on an

ST730 evaluation board and the IAR Embedded Workbench IDE, which is a pow-

erful Integrated Development Environment, allowing to develop embedded appli-

cation projects.

The ARM7-TDMI processor is a 32-bit RISC CPU designed by ARM, which is a

versatile processor designed for mobile devices and other low power electronics.

The processor supports both 32-bit and 16-bit instructions via the ARM and

Thumb instruction sets. The latter is a subset of the ARM instruction set and
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permits higher code density (smaller memory requirement).

ARM7-TDMI instructions can be executed conditionally and therefore have a

4-bit condition field in the instruction. The state of the condition flags can be

checked and if the condition flag state matches the condition, the instruction

executes normally. If the condition flag state does not match the condition, the

instruction is executed as a NOP (no operation).

For the realization of the single-path programming paradigm we require a

processor that provides a conditional move instruction with constant execution

time and the ARM7-TDMI processor satisfies this requirement.

The Development Environment, the IAR Embedded Workbench IDE frame-

work, incorporates the following tools:

• ARM IAR C/C++ Compiler

• ARM IAR Assembler

• versatile IAR ILINK Linker

• Editor and Project Manager

• IAR C-SPY debugger - state-of-the-art high-level language debugger

The IAR Embedded Workbench IDE comes with functions that allow program-

mer to stay in control of all project modules, for example, C or C++ source code

files, assembler files, include files, and other related modules.

The ARM IAR C/C++ Compiler is a state-of-the-art compiler that offers the

standard features of the C or C++ languages, plus some extensions designed in

order to take advantage of the ARM-specific facilities.

4.2.2 Measuring Execution Time

For our experiments the execution time for a given program p is defined by the

number of CPU clock cycles required by that program. Since we are not forced

to present results in terms of physical time but rather need to compare different

implementations with respect to their variability and offset, we are satisfied with

the term of CPU clock cycles.

For determining the exact number of clock cycles, an internal timer was used

for performing the measurements. We can express our indiviual notion of mea-

sured execution time for a program p if we just simplify the first formula of Section

2.3.2:
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Execution timeCycles = CPU clock cyclesProgramm p (4.2.1)

The number of clock cylces was determinded by connecting the RS232 in-

terface of the ST730 evaluation board to a PC. The data communication was

established by using the Microsoft Hyper Terminal (Version 5.1) which used the

adjustments of our test framework that was generated with the development en-

vironment. The RS232 interface was configured on both sides and the settings

have been adjusted to a baudrate of 9600 with 8 data bits, even parity and one

stop bit.

4.2.3 Generation of Test Data

In order to perform the experiments with our algorithms, we have to generate

appropriate random test data. We used the rand() function of MATLAB R2007,

which produces uniformly distributed pseudorandom numbers. MATLAB R2007

is a numerical computing environment, devloped by TheMathWorks, and is highly

used across industry and the academic world.

4.3 Experimental Code and Results

In this section we present our results and measurements obtained by our exper-

iments. Regarding the straight comparision-based class of algorithms (including

FindFirst, Bubble Sort, Binary Search and the Multi-Byte Counter), we illustrate

the source code of the FindFirst algorithm. Examining the code, we want to point

out the difference between the real syntax which we used in the source code of

the experiments and the one presented in Section 3.4.1.1. The essential differ-

ence lies exclusively in the used conditional operator (using ”?” in the real code

instead of ”#”), whereas the other parts of code of these algorithms are identical

with the source code of our experiments.

We also show the source code for the variants of the GCD algorithm and

furthermore, we are going to present additional variants for the cosine algorithm

that support an extended range of input-values.

The assembler code for all algorithms can be examined in the Section 5.
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4.3.1 FindFirst

4.3.1.1 Variants of Find First Algorithms

Listing 4.1: Find First - Traditional variant
1 static int findfirst1(int *keys , int size , int key)
2 {
3 int i;
4 int position = -1;
5 for(i=0; i<=size -1; i++)
6 {
7 if (keys[i] == key) /* max. iterations: SIZE */
8 {
9 position = i;

10 break;
11 }
12 }
13 return position;
14 }

Listing 4.2: Find First - Single-path variant
1 static int findfirst2(int *keys , int size , int key)
2 {
3 int i;
4 int position = -1;
5 for(i=size -1; i>=0; i--) /* max. iterations: SIZE */
6 {
7 position = ((keys[i] == key) ? i : position );
8 }
9 return position;

10 }

4.3.1.2 Results and Measurements

For the experiments with the FindFirst algorithm we provided a list of 128 ran-

domly chosen values within the range between 0 and 100. Since the array has

just a size of 128, we got single values to be in the list more than once. Based

on this list, we performed a "find first" search with 102 iteration runs including all

values between 0 and 100. On average, each third element was not contained

in the list. The execution time in Version 1, for the scenario of not finding the

searched element in the list, yields the WCET. The different execution times can

be examined in Table 4.4.

Version Implementation Mean BCET WCET WCET Factor

1 Traditional Variant 858.27 154 1430 1

2 Single Path Variant 1551 1551 1551 1.0846

Table 4.1: Results of FindFirst Experiments

Considering now our results in Table 4.4, we see that unlike Version 1, the

other implementation, Version 2, shows a constant execution time, no matter
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the element is contained in the list or not. We have to note that the constancy

is only given if the size of the list (array) is defined statically. The WCET factor of

1.0846 brings an overhead of execution time which seems to be insignificant.

Thus, the single-path variant of the FindFirst algorithm can be seen as a quite

suitable alternative to the traditional variant.

4.3.2 Bubble Sort

4.3.2.1 Results and Measurements

For the experiments with the Bubble Sort algorithm we chose our test data to

be an array of the size 16. For this array, we chose a sequence of 16 distinct

values. In order to achieve 50 different sequences of numbers, we evaluated 50

different random permutations, including two special cases - the worst-case and

best-case scenario. The two special cases were generated manually.

The worst case for the Bubble Sort algorithm is a list in descending order,

whereas the best case is given by an already sorted (ascending) list. These cases

could be confirmed in our experiments by the results for the WCET and BCET.

Table 4.2 reveals the different execution times obtained by our measurments.

The source code of both algorithms, Version 1 and Version 2, can be looked

up in Section 3.3.4.3.

Version Implementation Mean BCET WCET WCET Factor

1 Traditional Variant 2014.8 1895 2135 1

2 Single Path Variant 2495 2495 2495 1.1686

Table 4.2: Results of Bubble Sort Experiments

4.3.3 Binary Search

4.3.3.1 Results and Measurements

For the experiments with the Binary Search algorithm we provided an array of

size 128 filled with data. Later on, we changed the size of the array for our

measurments first from 128 to 64 and afterwards to 28.

In order to check all different cases during our testing, we used an array

with 128 values including all even values between 0 and 254. With that array

we performed our measurments with an input data set which covered all even

and odd values within this range and some additional boundary values ouside
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the range. For the experiments with an array-size of 64 respectivly 28, we

downscaled the input data set proportionally.

Table 4.3 lists the different execution times obtained by our measurments.

One can see that the WCETs of both Versions are very close to each other,

which shows that the single-path variant (Version 2) is an adequate alternative

compared to its original implementation (Version 1).

Similar to the Find First algorithm, also here the size of the list (array) needs

to be defined statically in order to achieve constant computation times. Further-

emore, the results in the table show that it is not always the same algorithm

that has the better WCET factor, which depends on the size of the array and not

on the chosen input data.

Version Implementation Mean BCET WCET WCET Factor

Size 128

1 Traditional Variant 247.37 151 274 1

2 Single Path Variant 269 269 269 0.9817

Size 64

1 Traditional Variant 230.69 151 257 1

2 Single Path Variant 254 254 254 0.9883

Size 28

1 Traditional Variant 212.39 151 223 1

2 Single Path Variant 224 224 224 1.0044

Table 4.3: Results of Binary Search Experiments

The source code of both algorithms, Version 1 and Version 2, can be found

in Section 3.3.4.4.

4.3.4 Multi-Byte Counter

4.3.4.1 Results and Measurements

For the experiments with the Multi-Byte Counter we used an array of size 10,

providing 10 bytes. According to the source code of the algorithm, presented

in Section 3.3.4.5, we provided different array assingments, which covered all

possible scenarios for the behavior of the algorithm. This included 10 different

distinct assignments where the first one contained for every array position a

value smaller than 255. The other ones were modifed in a way that from the

one side to the other, always one additional array position was set to 255. This

was done systematically until all values in the array except the last one were set

to 255 (in order not to cause an overflow of the 10-byte counter). Furthermore,
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we provided some additional random input values where at least one position of

the array was set to 255.

Version Implementation Mean BCET WCET WCET Factor

1 Traditional Variant 232 160 304 1

2 Single Path Variant 276 276 276 0.9079

Table 4.4: Results of Multi-Byte Counter Experiments

4.3.5 Basic Arithmetic Functions

In the following Section, Section 4.3.5.1, we briefly show the execution times

for the numeric single-path algorithms used within the cosine implementation.

This concerns the integer multiplication and the integer division. The single-path

integer modulo-division is based on the basic division and therefore does not need

to be examined. Therefore, we provided only a small subset of random unsigned

integer numbers within the range of 32 bit which should illustrate the different

behaviors for the execution times of the respective variants.

4.3.5.1 Results and Measurements

Table 4.5 shows the execution times for the integer division and multiplication.

One can see that the standard multiplication needs just a few cycles. This is

because the underlying operation is implemented in hardware. The single-path

variant has to be implemented in software which leads to a considerably larger

execution time.

Both, the standard division and the single-path division algorithm are pure

software implementations. One can see that the factor between these two vari-

ants is much smaller than the factor of the multiplications.

Version Implementation Mean BCET WCET WCET Factor

1 Standard MUL 5 4 7 1

2 Single Path MUL 156 156 156 26.5

1 Standard DIV 204.43 185 240 1

2 Single Path DIV 685 685 685 2.8541

Table 4.5: Results of Integer Multiplication and Division Experiments

The source code for both algorithms, Version 1 and Version 2, and a detailed

explanation of the hardware properties that concern the implementation of the
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single-path multiplication can be found in Section 3.5.3.2 respectively Section

3.5.3.3.

4.3.6 Greatest Common Divisor - Euclid

4.3.6.1 Variants of Standard GCD Algorithm

Listing 4.3: GCD - Standard Implementation

1 int gcd(int a, int b)
2 {
3 if(a < 0) a = -a;
4 if(b < 0) b = -b;
5 while( b > 0)
6 {
7 int temp = a;
8 a = b;
9 b = temp % b;

10 }
11 return a;
12 }

Listing 4.4: GCD - Single-path variant

1 int gcd_sp(int a, int b, int n)
2 {
3 a = a < 0 ? -a : a;
4 b = b < 0 ? -b : b;
5 int temp;
6 for(int i = 0; i < n; i++)
7 {
8 temp = (b > 0) ? a : 0;
9 a = (b > 0) ? b : a;

10 b = temp % b; /* optionally Soft -Mod -Div. */
11 }
12 return a;
13 }

For our experiments with the different GCD algorithms we chose a special

subset of the Fibonacci numbers as our test data. Since the worst case for

the Standard Euclid GCD algorithm is determined by two adjacent Fibonacci num-

bers, we included, among other numbers, the two biggest Fibonacci numbers

which are within the range of signed integers (231 − 1) in our test values. This

included numbers till (and including) the 46th Fibonacci number. We denote the

sequence number of the biggest Fibonacci number within the range of 32-bit

signed integers to be Nmax = 46.

Applying the two biggest adjacent Fibonacci numbers of that sequence to the

algorithm shows that the loop variable n of the algorithm has to be chosen to

be at least n ≥ Nmax − 1 = 45 in order to gain correct results for the greatest

common divisor.

Furthermore we could observe that the variable n can be reduced by one if we

ensure that the algorithm takes always the bigger number for the first argument
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(a > b). Otherwise, if (a < b), the algorithm needs exactly one extra loop-iteration

in order to swap the two input parameters a and b.

4.3.6.2 Variants of Binary GCD Algorithm

Listing 4.5: Binary GCD Implementation

1 #define EVEN(x) ((x&0x1 )==0)
2

3 int gcd_binary(int a, int b)
4 {
5 unsigned int u = (a < 0) ? (-a) : a;
6 unsigned int v = (b < 0) ? (-b) : b;
7 int k = 0;
8 if(u == 0 || v == 0) return (u | v);
9 while(EVEN(u)){

10 u = u >> 1;
11 if(EVEN(v)){
12 v = v >> 1;
13 k++;
14 }
15 }
16 while (v > 0) {
17 while(EVEN(v)) v = v >> 1;
18 if(u < v) v = v - u;
19 else {
20 int diff = u - v;
21 u = v;
22 v = diff;
23 }
24 }
25 return u << k;
26 }

Listing 4.6: Binary GCD - Single-path variant

1 int gcd_binary_sp(int a, int b)
2 {
3 unsigned int u = (a < 0) ? (-a) : a;
4 unsigned int v = (b < 0) ? (-b) : b;
5 int k = 0;
6 if(u == 0 || v == 0) { u = v = (u | v);}
7 int i;
8 for ( i = 0; i < 31; i++){
9 int even_u = (u & 0x1) == 0;

10 int even_v = (v & 0x1) == 0;
11 if (even_u) u = u >> 1;
12 if (even_v) v = v >> 1;
13 if (even_u && even_v) k++;
14 }
15 for (i = 0; i < 60; ++i) {
16 int diff = u - v;
17 if ((v & 0x1) && diff < 0) v = -diff;
18 if ((v & 0x1) && diff >= 0) u = v;
19 if ((v & 0x1) && diff >= 0) v = diff;
20 v = v >> 1;
21 }
22 return u << k;
23 }
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4.3.6.3 Results and Measurements

Table 4.6 shows the summary of our results of the GCD algorithms. Version 2a

is a small modification of Version 2 which is shown in Listing 4.4. Here the basic

modulo-division (Line 10) gets substituted by the Software Modulo Divison that

has been introduced in Section 3.5.3.4.

Version Implementation Mean BCET WCET WCET Factor

1 Standard 972 194 2240 1

2 Standard (Single Path Code) 1769 1380 2326 1.0384

2a Standard (SP + SoftModulo) 27638 27638 27638 12.3384

3 Binary GCD 577 170 710 1

4 Binary GCD (Single Path Code) 1705 1705 1705 2.4042

Table 4.6: Results of different GCD implementations

The impacts on the execution time of the fixed loop bound when using the

expensive software modulo-division can be seen clearly in the table above. Due

to the long execution time of the modulo division, the whole algorithm appears

to be quite inapplicable for further use. Only with an adequate solution for the

modulo division the adaption of Euclid’s algorithm makes sense. Although both

the binary and the standard single-path algorithm have the problem of input-data

dependent loop bounds, the binary variant (Version 4) brings practical results

on the execution time which are also beneath the WCET of the standard Euclid

algorithm (Version 1).
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4.3.7 Trigonometric Functions - Cosine

4.3.7.1 Variants for the Cosine Implementations

The following two Listings, Listing 4.7 and 4.8, show how the original algorithm

with the defined lookup table, illustrated in Listing 3.23, can be adapted in order

to enable results for an extended range of input values that are not covered by

the defined lookup table. The first Listing shows how to extend the interval of the

original algorithm from [0, π
2
] to the interval [-π, π]. If the code extensions are

written in such an appropriate single-path oriented manner, the uniform execution

time can be maintained.

Listing 4.7: Single Path Cosine - Interval: -PI to PI

1 /* cosine function: interval -PI to PI */
2 int cos_(int a)
3 {
4 volatile int y1, y2, y, y_minus;
5 volatile int x, x1, x2;
6 volatile int m_, m__ , comma;
7 volatile int a_overPI_half , a_v;
8 volatile int a__ = a;
9 volatile int a_m = -a;

10

11 a__ = (a < 0 ) ? a_m : a__;
12 a_v = a__;
13 a_overPI_half = 3294199 - a_v;
14 a_v = (a_v < 1647099) ? a_v : a_overPI_half;
15

16 // range: 1 -1646264 divided by 1024
17 //(to achieve lookup -value for x: range: 0 - 1609)
18 x = (a_v >> 10);
19 m_ = mod_1024_SP(a_v); // modulo function with divisor 1024
20 m__ = MUL_ (10000 ,m_); // SinglePath Multiplication Function
21 comma = (m__ >> 10); // 4 comma digit
22 x1 = x; //(lookup -value for x1 - range: 0 - 1608)
23 x2 = x+1;
24 y1 = cos_table[x1];
25 y2 = cos_table[x2];
26 y = ppoint(x1 ,y1,y2,comma );
27

28 y_minus = -y;
29 y = (a__ > 1647099) ? y_minus : y;
30 return y;
31 }*/

In order to extend the range of input values we define the first variant in

the previous listing to be the basis for all further extensions. Since the cosine

function is a periodic function and since we are able to provide results for the

interval [-π, π], we can assume that for each arbitray input data x, given to the

algorithm, we just need to shift the value x by a multiple of 2π in order to bring

it into the interval of [-π, π]. Depending on the sign of x, we need either to

substract 2π from x or add it until the value gets into the interval [-π, π].

The following listing shows this adaption for an interval of [-2π, 2π] given by

the lines 8-13. For greater but necessarily bounded intervals, we suggest to
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insert a loop that performs the same adjustment several times and where the

number of loop-iterations is constant.

Listing 4.8: Single Path Cosine - Interval: -2PI to 2PI

1 /* cosine function: interval -2PI to 2PI */
2 int cos_(int a)
3 {
4 volatile int y, y_minus , y1 , y2;
5 volatile int x, x1, x2, x1_ , rx1;
6 volatile int m_, m__ , comma , a_overPI_half;
7 volatile int a_init = a;
8 volatile int const_ = 3294199; // equals PI
9 volatile int a_init1 = a - 6588397;

10 volatile int a_init2 = a + 6588397;
11

12 a_init = (a > const_) ? a_init1 : a_init;
13 a_init = (a < -const_) ? a_init2 : a_init;
14

15 volatile int a__ = a_init;
16 volatile int a_m = -a_init;
17 volatile int a_v;
18

19 a__ = (a__ < 0 ) ? a_m : a__;
20 a_v = a__;
21 a_overPI_half = 3294199 - a_v;
22 a_v = (a_v < 1647099) ? a_v : a_overPI_half;
23

24 x = (a_v >> 10);
25 m_ = mod_1024_SP(a_v);
26 m__ = MUL_ (10000 ,m_);
27 comma = (m__ >> 10);
28 x1 = x;
29 x2 = x+1;
30 y1 = cos_table[x1];
31 y2 = cos_table[x2];
32 y = ppoint(x1 ,y1 ,y2 ,comma );
33

34 y_minus = -y;
35 y = (a__ > 1647099) ? y_minus : y;
36 return y;
37 }

4.3.7.2 Results and Measurements

Table 4.7 shows the execution time for all three different single-path Cosine

implementations including the basic implementation given in Section 3.5.2 and

the two extended variants that have been shown right before. At first, the

table shows the execution time for the respective variant without including the

arithmetic single-path functions (which is the single-path integer multiplication

and division). Subsequently the table shows the respective execution time for

the same implementation where the additional functions have been included. For

each interval 100 random test values were used in the evaluation.

The third statement of each particular range represents an assumption that

assumes the availability of proper arithmetic functions that does not cause such

an overhead of execution times. First we assume that the (hardware) multiplica-
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Version Implementation Mean BCET WCET WCET Factor

[0, π
2

]

1 Basic SP Cosine 292.51 291 293 1

1a Basic SP Cosine (+ SP Func.) 922 922 922 3.15

1b Basic SP Assumption 411 411 411 1.40

[-π, π]

2 Extended SP Cosine 348.49 347 349 1

2a Extended SP Cosine (+ SP Func.) 978 978 978 2.80

2b Extended SP Assumption 467 467 467 1.34

[-2π, 2π]

3 Extended SP Cosine 392.56 391 393 1

3a Extended SP Cosine (+ SP Func.) 1022 1022 1022 2.60

3b Extended SP Assumption 511 511 511 1.30

Table 4.7: Results of Cosine LookUp-Table Implementations

tion can be adapted very easily in a way that the execution time gets fixed to the

WCET of the standard multiplication (see Table 4.5).

Furthermore we assume that it is possible to achieve a single-path software

integer division that has the same WCET like the standard division (see Table

4.5). Thus we subtract the difference between the WCET of the standard divi-

sion and the single-path division from an implementation that contains no single-

path multiplication but the single-path division function. With that we obtain our

assumption value for the execution time (see Versions 1b, 2b, 3b).

In order to evaluate the accurary of the Cosine values that we achieved during

our experiments we calculated on the ARM7 processor the accurate results for

our the input values of all examined ranges by using the standard cos() function

which is provided by the C library.

Table 4.8 shows the execution times for the standard-C cos() function and

illustrates the variance of the execution time of this standard implementation.

We exemplarily show the execution times for the range [0, π
2
].

Version Implementation Mean BCET WCET

[0, π
2

]

1 Standard C cos() 2335.69 2054 2582

Table 4.8: Results of the Standard C Cosine Function

Within our experiments, we restricted the accuracy to be single precision

which appeared to be a sufficient range for our results. The single precision

is usually a binary floating-point number format that occupies 4 bytes, where
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23 bits of the significand appear in the memory format and where the total

precision is formed by 24 bits. Thus, the accuracy is equivalent to log10(224) ≈

7.225 decimal digits.

Version Implementation maximal observed Deviation average Deviation

[0, π
2

]

1 Standard C cos() 0.0 0.0

2 Basic SP Cosine 1 ∗ 10−6 2.61 ∗ 10−7

[-π, π]

1 Standard C cos() 0.0 0.0

2 Extended SP Cosine 1 ∗ 10−6 4.1 ∗ 10−7

[-2π, 2π]

1 Standard C cos() 0.0 0.0

2 Extended SP Cosine 2 ∗ 10−6 2.7 ∗ 10−7

Table 4.9: Accuracy of the different Implementations

Considering the accuracy of the standard implementation (Version 1) which

covers at least double precision, we can use this implementation for determining

the deviations of all other implementations. Table 4.9 shows for each specific

interval the deviation of each Version from the "real" value that is obtained by

Version 1.

4.4 Discussion of Results

First we evaluated in our experiments algorithms that belong to the class of pure

comparison-based algorithms. Concering this part of the experiments we want

to point out the following observations.

• The Find First algorithm that has been examined at first shows very clearly,

that the WCET-oriented approach cannot always be applied to an algorithm

wihout changing the strategy of it. In this case the strategy of the algorithm

definitely had to be changed.

In contrast to the Find First algorithm the strategy of other ones like

Binary Search or Bubble Sort does not need to be changed significantly.

In the case of Binary Sort the compiler behavior influences the single-path

adaption much more than the slight change of the strategy for that algo-

rithm. Besides it was also observed that for such a restriced class of

algorithms the scheme for the adaption remains almost the same.
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• Another interesting point regarding the compiler behavior and that class

of algorithms is given by the results of the Multi − Byte Counter algorithm.

When studying the execution times one can see that the compiler translates

the source code of the single-path variant much more efficiently than the

traditional variant in terms of execution time. Although the source code of

the traditional variant seems to comprise less complexity than the single-

path variant, for the latter one a better performance is achieved. This

shows that the compiler behavior is notably important for the performance

of single-path code.

• When studying the results of all pure comparison-based algorithms we can

conclude that the implementations on the given target hardware gain posi-

tive findings. Every algorithm could be implemented in a way that the WCET

factor of their WCET-oriented respectively single-path variant is less than

1.17. This seems to be a very suitable scaling factor and allows to use the

variants of these algorithms also in practice on a convenient hardware.

In this thesis we focused also on problems beyond the comparison-based

class of algorithm. Therefore, we examined the well-known Euclidean Greatest

Common Divisor algorithm.

• For this algorithm we had to provide two additional numeric single-path

functions which realize the required modulo division in order to achieve the

single-path variant for the Euclidean GCD algorithm.

Nevertheless, this variant suffers from extreme input dependencies which

make the performance of the algorithm disastrous. This is due to the fact

that the number of loop-iterations depends on the two input parameters

that are given to the algorithm.

• This situation shows that not every algorithm is suitable for being adapted

to single-path code. In such a case an alternative algorithm with another

strategy is required. The Binary GCD algorithm represents such an appro-

priate alterative. This algorithm is suitable for being adapted to single-path

code. Its WCET factor for the adapted variant is 2.4 but it has a shorter

WCET than the Euclidean GCD algorithm.

• Regarding the source code for the single-path variant of the Binary GCD

we want to point out an observation that concerns the used compiler. Ac-

cording to the results for execution times and low-level code it turned out

that the compiler is able to translate standard if-conditions into single-path

code no matter if the branch is given as C conditional operater ("?") or not.
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In order to deal with other numeric problems it was necessary to focus on

basic arithmetic functions like multiplication and division. While primitive (logical)

operations like shifts and comparison operations perform on the target hardware

in uniform execution time (for a range of 32 bit) this is not the case for basic

arithmetic functions.

• Altough it was possible to implement single-path operations for the integer

multiplication and division operation we have to note that the performance,

especially the one of the integer division, brings a huge overhead that can

cause problems if the WCET needs to be short. The integer multiplication

causes also an overhead but due to the fact that it is based on a hardware

implementation it brings considerably less overhead for the execution time.

• When applying these operations to the single-path Cosine implementation

the results reveal the outstanding overhead for the execution times. Our

assumptions on the execution times attempt to identify possible values for

a scenario where adequate numeric single-path operations are available.

Hence, there remains a huge demand for hardware implementations of

mathematical functions such as multiplication and division that produce re-

sults in constant execution time and thus can substitute expensive software

implementations.

Therefore, we would even propose multiple implementations for different

ranges so that one can choose the required magnitude needed for the set

of numeric operations in a given algorithm. The adaption for the already

presented hardware multiplication seems to be a minor problem since the

hardware needs only to be forced to multiply over the whole bit-range. On

the contrary the hardware implementations for integer divisions is very of-

ten not available on this kind of hardware and therefore would need to be

installed completely.
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Summary and Conclusion

The motivation for an exact, clear and efficient WCET-analysis originates from

the fact that in these days software needs to fulfil strict safety requirements and

that at the same time the temporal behavior plays a crucial role. This master

thesis provides an insight into strategies and solutions for several algorithms in

order to make the predictability and thus the WCET analysis for these algorithms

easier. Based on the already published single-path theory which treated some

problems of the illustrated algorithms this thesis shows additional strategies for

that approach when examining algorithmic problems of a different kind of nature.

The main strategy for reducing the complexity of WCET analysis in this work

is based on the single-path approach which provides not only constant execution

times, but also executions that possess a single execution path. This is the

key property for simplyfying the WCET analysis. It makes path analysis unneces-

sary. Since the innovations of these single-path approach affect the algorithms

on both, the high-level as well as the low-level code, there are different prop-

erties that need to be considered. These properties deal with requirements

regarding the program code, the compiler, and the underlying target hardware

and are pointed out in all detail. Regarding the target hardware it is clearly high-

lighted that the instruction set of the target-hardware, on the one hand, needs to

comprise conditional move instructions with constant execution time, but on the

other hand, requires an appropriate compiler in order to implement the desired

behavior of the high-level language.

Regarding the high-level source code, the required steps for a single-path

adaption are identified for different algorithms and in addition generalizations are

made, in order to point out how to apply the approach to other similar algorithms.

Beyond that, a classification of algorithms is introduced, that points out that

the introduced approach is only applicable within the scope of pure comparison-

based algorithms. Therefore, some additional algorithmic problems are consid-
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ered which prove that algorithms that comprise numeric issues cannot be solved

properly using the single-path approach. Hence, the numeric problem of trigono-

metric functions is used in order to demonstrate how the single-path approach

combined with additional techniques can yield the desired properties of uniform

execution times as well as a single execution path. One of these techiques sug-

gests that it might be useful to preprocess input-data in the form of look-up

tables, in order to process the results of an algorithm in a uniform manner and

constant execution time.

When implementing a Cosine function for trigonometric functions that is

based on a look-up tables several algorithms for basic arithmethics (including

multiplication, division and modolu-division) are introduced in order to avoid the

problem of execution-time variations.

Finally, the results of the experiments show that the presented comparison-

based algorithms but also the algorithms implementing numeric functions satisfy

the required conditions and appear to be adequate alternatives to the original

variants regarding their performance and their single execution time if the limited

accuracy is sufficient. Then this implementation can even compete with other

implementations for the Cosine since it has a considerably shorter execution

time because of the use of lookup tables.

We can conclude that the impacts of WCET analysis when using the single-

path approach combined with other techniques appear to be very beneficial, since

the problem of expensive path analysis becomes needless. Nevertheless, there

remains a demand for hardware implementations of mathematical functions such

as multiplication and division that can produce results in constant execution time.

If the adaption of hardware is too costly we suggest the use of a cost-efficient

software implementation.
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A.1 Low Level Source Code

A.1.1 Find First Traditional Variant

With the help of the Find First example and its low-level code, we want to point

out the properties which enable the single-path code. The already commented

assembler code reveals that the traditional variant realizes the task with the

basic mov instructions. According to the high-level code, presentend in Section

3.3.4.2, the algorithm breaks up with the main loop (label at line 10) if the

branch statement in line 15 state that the searched key does not match the

value that is stored in key[i].

Listing A.1: Find First Tradtional

1 /* findfirst_trad(int *keys , int size , int key) */

2 findfirst_trad: //R2 = key

3 PUSH {R0,LR}

4 MVN R3 ,#+0 // set R3 to NOT ZERO (-1)

5 MOV R12 ,#+0 // Sets R12 to 0 - loopcounter i

6 SUB R1,R1 ,#+1 // R1-- set size to size -1 (i)

7 B ?? findfirst_trad_0

8 ?? findfirst_trad_1:

9 ADD R12 ,R12 ,#+1 // inc counter variable

10 ?? findfirst_trad_0:

11 CMP R1,R12 // compare (size -1) with loop counter i

12 BLT ?? findfirst_trad_2 // branch larger then

13 LDR LR ,[R0], #+4 //loads LR from the address in RO

14 CMP LR,R2 // compare keys[i] (LR) with key (R2)

15 BNE ?? findfirst_trad_1 //if not equal go to begin of loop

16 MOV R3,R12 // copies current position i to R3

17 ?? findfirst_trad_2:

18 MOV R0,R3 // write R3(position) to R0

19 POP {R12 ,PC}

20 END

A.1.2 Find First Single Path Variant

Contrary to the traditional variant, the low-level code of the following single-path

implementation shows how the conditional move instruction ( MOV EQ in line

(10)) can be used in order to implement the desired behaviour. The main loop
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in this algorithm (label at line 7) runs through until all fields have been checked.

The MOV EQ instruction can be finally used to place the searched value. Since

this instruction takes always one computation cycle, no matter if the "move" gets

performed or not, we achieve a single execution path with constant execution

time.

Listing A.2: Find First Single Path

1 /* int findfirst_sp2(int *keys , int size , int key) */

2 findfirst_sp2: //R2 = key

3 MVN R3 ,#+0 // set R3(position) to -1:

4 SUBS R1,R1 ,#+1 // R1 --: set variable size to size -1 (i)

5 BMI ?? findfirst_sp2_0 //quit loop if size < 0

6 ADD R0,R0 ,R1, LSL #+2 //init position for array

7 ?? findfirst_sp2_1:

8 LDR R12 ,[R0, #+0] //loads in R12 from the address R0+

9 CMP R12 ,R2 // compare keys[i] (R12) with key (R2)

10 MOVEQ R3,R1 // pos = i if equal ,

11 SUB R1,R1 ,#+1 // decrement counter i of loop

12 SUB R0,R0 ,#+4 // adjust addrees for array

13 CMP R1 ,#+0 // compare i with 0

14 BPL ?? findfirst_sp2_1 //if i >= 0 go to begin of loop

15 ?? findfirst_sp2_0:

16 MOV R0,R3 // write R3(position) to R0

17 MOV PC,LR

A.1.3 Bubble Sort Standard Implementation

Listing A.3: Binary Search Standard Implementation

1 /* Bubble Sort - Traditional Impl. */

2 bubble_trad:

3 PUSH {R4,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI R4 Frame(CFA , -8)

6 CFI CFA R13+8

7 MOV R1 ,#+15

8 MOV R2 ,#+15

9 ?? bubble_trad_0:

10 ADD R3,R0 ,#+4

11 MOV R12 ,R1

12 ?? bubble_trad_1:

13 LDR LR ,[R3, #+0]

14 LDR R4 ,[R3, #-4]

15 CMP LR,R4

16 STRLT R4 ,[R3, #+0]

17 STRLT LR ,[R3, #-4]

18 ADD R3,R3 ,#+4

19 SUBS R12 ,R12 ,#+1

20 BNE ?? bubble_trad_1

21 SUB R1,R1 ,#+1

22 SUBS R2,R2 ,#+1

23 BNE ?? bubble_trad_0

24 LDR R0 ,[R0, #+0]

25 POP {R4,PC}
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A.1.4 Bubble Sort Single Path Variant

Listing A.4: GCD Binary Search Single Path Variant

1 /* Bubble Sort - Single Path Variant */

2 bubble_sp:

3 PUSH {R0,R4 ,R5,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI R5 Frame(CFA , -8)

6 CFI R4 Frame(CFA , -12)

7 CFI CFA R13+16

8 MOV R1 ,#+15

9 MOV R2 ,#+15

10 ?? bubble_sp_0:

11 ADD R3,R0 ,#+4

12 MOV R12 ,R1

13 ?? bubble_sp_1:

14 LDR LR ,[R3 , #-4]

15 LDR R4 ,[R3 , #+0]

16 MOV R5,R4

17 CMP R4,LR

18 MOVGT R5 ,LR

19 STR R5 ,[R3 , #-4]

20 CMP R4,LR

21 MOVLT R4 ,LR

22 STR R4 ,[R3], #+4

23 SUBS R12 ,R12 ,#+1

24 BNE ?? bubble_sp_1

25 SUB R1,R1 ,#+1

26 SUBS R2 ,R2 ,#+1

27 BNE ?? bubble_sp_0

28 LDR R0 ,[R0 , #+0]

29 POP {R3-R5 ,PC}

A.1.5 Binary Search Standard Implementation

Listing A.5: Binary Search Standard Implementation

1 /* Binary Search - Standard Implementation */

2 bs_trad:

3 PUSH {R0,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI CFA R13+8

6 MOV R3 ,#+0

7 SUB R12 ,R1 ,#+1

8 ?? bs_trad_0:

9 ADD R1,R3 ,R12

10 ASR R1,R1 ,#+1

11 LDR LR ,[R0 , +R1, LSL #+2]

12 CMP LR,R2

13 MOVEQ R0 ,R1

14 POPEQ {R12 ,PC}

15 CMP LR,R2

16 ADDLT R3 ,R1 ,#+1

17 SUBGE R12 ,R1 ,#+1

18 CMP R12 ,R3

19 BGE ?? bs_trad_0

20 MVN R0 ,#+0

21 POP {R12 ,PC}
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A.1.6 Binary Search Single Path

Listing A.6: GCD Binary Search Single Path Variant

1 /* Binary Search - Single Path Variant */

2 bs_singlep:

3 PUSH {R4,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI R4 Frame(CFA , -8)

6 CFI CFA R13+8

7 MOV R12 ,#+0

8 SUB LR,R1 ,#+1

9 ASR R3,LR ,#+1

10 CMP R1 ,#+1

11 BLT ?? bs_singlep_0

12 ?? bs_singlep_1:

13 LDR R4 ,[R0, +R3, LSL #+2]

14 CMP R2,R4

15 SUBLT LR,R3 ,#+1

16 CMP R4,R2

17 ADDLT R12 ,R3 ,#+1

18 ADD R3,R12 ,LR

19 ASR R3,R3 ,#+1

20 ASR R1,R1 ,#+1

21 CMP R1 ,#+1

22 BGE ?? bs_singlep_1

23 ?? bs_singlep_0:

24 LDR R0 ,[R0, +R3, LSL #+2]

25 CMP R0,R2

26 MVNNE R3 ,#+0

27 MOV R0,R3

28 POP {R4,PC}

A.1.7 Multi-Byte Counter Standard Implementation

Listing A.7: Multi-Byte Counter Standard Implementation

1 /* Multi Byte Counter - Traditional Implementation */

2 inc_counter_trad:

3 MOV R1 ,#+0

4 MOV R2,R0

5 ?? inc_counter_trad_0:

6 LDRB R3 ,[R2 , #+0]

7 ADD R3,R3 ,#+1

8 STRB R3 ,[R2 , #+0]

9 LDRB R3 ,[R2], #+1

10 CMP R3 ,#+0

11 BNE ?? inc_counter_trad_1

12 ADD R1,R1 ,#+1

13 CMP R1 ,#+10

14 BLT ?? inc_counter_trad_0

15 ?? inc_counter_trad_1:

16 LDRB R0 ,[R0 , #+2]

17 MOV PC,LR
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A.1.8 Multi-Byte Counter Single Path Variant

Listing A.8: Multi-Byte Counter Single Path Variant

1 /* Multi Byte Counter - Single Path Implementation */

2 inc_counter_sp2:

3 PUSH {R0,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI CFA R13+8

6 MOV R1 ,#+1

7 MOV R2,R0

8 MOV R3 ,#+10

9 ?? inc_counter_sp2_0:

10 LDRB R12 ,[R2, #+0]

11 ADD R12 ,R1 ,R12

12 STRB R12 ,[R2, #+0]

13 LSLS R12 ,R12 ,#+24

14 MOVNE R1 ,#+0

15 ADD R2,R2 ,#+1

16 SUBS R3 ,R3 ,#+1

17 BNE ?? inc_counter_sp2_0

18 LDRB R0 ,[R0 , #+2]

19 POP {R12 ,PC}

A.1.9 GCD Standard Variant (Euclid)

Listing A.9: GCD Standard - Euclid

1 /* GCD , Standard Impl */

2 gcd:

3 PUSH {R4,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI R4 Frame(CFA , -8)

6 CFI CFA R13+8

7 MOVS R4 ,R0

8 RSBMI R4 ,R4 ,#+0

9 CMP R1 ,#+0

10 BPL ??gcd_0

11 RSB R1,R1 ,#+0

12 B ??gcd_0

13 ?? gcd_1:

14 MOV R4,R1

15 BL __aeabi_idivmod

16 ?? gcd_0:

17 CMP R1 ,#+1

18 MOV R0,R4

19 BGE ??gcd_1

20 POP {R4,PC}

A.1.10 GCD Single Path (Euclid)

Listing A.10: GCD Single Path - Euclid

1 /* GCD Standard - Single Path */

2 gcd_sp:

3 PUSH {R0,R4 ,R5,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI R5 Frame(CFA , -8)

6 CFI R4 Frame(CFA , -12)

77



APPENDIX

7 CFI CFA R13+16

8 MOV R4,R2

9 MOVS R5,R0

10 RSBMI R5,R5 ,#+0

11 CMP R1 ,#+0

12 RSBMI R1,R1 ,#+0

13 CMP R4 ,#+1

14 BLT ?? gcd_sp_0

15 ?? gcd_sp_1:

16 CMP R1 ,#+1

17 MOVGE R0,R5

18 MOVGE R5,R1

19 BL __aeabi_idivmod

20 SUBS R4,R4 ,#+1

21 BNE ?? gcd_sp_1

22 ?? gcd_sp_0:

23 MOV R0,R5

24 POP {R3-R5,PC}

A.1.11 GCD Binary Variant

Listing A.11: GCD Binary Variant

1 /* GCD , Binary Impl */

2 gcd_binary:

3 CMP R0 ,#+0

4 RSBMI R0,R0 ,#+0

5 CMP R1 ,#+0

6 RSBMI R1,R1 ,#+0

7 MOV R2 ,#+0

8 CMP R0 ,#+0

9 CMPNE R1 ,#+0

10 BNE ?? gcd_binary_0

11 ORR R0,R1 ,R0

12 MOV PC,LR

13 ?? gcd_binary_1:

14 LSR R0,R0 ,#+1

15 TST R1 ,#0x1

16 LSREQ R1,R1 ,#+1

17 ADDEQ R2,R2 ,#+1

18 ?? gcd_binary_0:

19 TST R0 ,#0x1

20 BEQ ?? gcd_binary_1

21 ?? gcd_binary_2:

22 CMP R1 ,#+0

23 BNE ?? gcd_binary_3

24 LSL R0,R0 ,R2

25 MOV PC,LR

26 ?? gcd_binary_4:

27 LSR R1,R1 ,#+1

28 ?? gcd_binary_3:

29 TST R1 ,#0x1

30 BEQ ?? gcd_binary_4

31 CMP R0,R1

32 SUBCC R1,R1 ,R0

33 BCC ?? gcd_binary_2

34 SUB R3,R0 ,R1

35 MOV R0,R1

36 MOV R1,R3

37 B ?? gcd_binary_2
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A.1.12 GCD Binary Single Path Variant

Listing A.12: GCD Binary Single Path Variant

1 /* GCD , Binary Single Path Impl */

2 gcd_binary_sp:

3 PUSH {R0,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI CFA R13+8

6 CMP R0 ,#+0

7 RSBMI R0 ,R0 ,#+0

8 CMP R1 ,#+0

9 RSBMI R1 ,R1 ,#+0

10 MOV R2 ,#+0

11 CMP R0 ,#+0

12 CMPNE R1 ,#+0

13 ORREQ R1 ,R0 ,R1

14 MOVEQ R0 ,R1

15 MOV R3 ,#+31

16 ?? gcd_binary_sp_0:

17 AND R12 ,R0 ,#0x1

18 EOR R12 ,R12 ,#0x1

19 AND LR,R1 ,#0x1

20 EOR LR,LR ,#0x1

21 CMP R12 ,#+0

22 LSRNE R0 ,R0 ,#+1

23 CMP LR ,#+0

24 LSRNE R1 ,R1 ,#+1

25 CMP R12 ,#+0

26 CMPNE LR ,#+0

27 ADDNE R2 ,R2 ,#+1

28 SUBS R3 ,R3 ,#+1

29 BNE ?? gcd_binary_sp_0

30 MOV R3 ,#+60

31 ?? gcd_binary_sp_1:

32 SUB R12 ,R0 ,R1

33 TST R1 ,#0x1

34 BEQ ?? gcd_binary_sp_2

35 CMP R12 ,#+0

36 RSBMI R1 ,R12 ,#+0

37 ?? gcd_binary_sp_2:

38 TST R1 ,#0x1

39 BEQ ?? gcd_binary_sp_3

40 CMP R12 ,#+0

41 MOVPL R0 ,R1

42 ?? gcd_binary_sp_3:

43 TST R1 ,#0x1

44 BEQ ?? gcd_binary_sp_4

45 CMP R12 ,#+0

46 MOVPL R1 ,R12

47 ?? gcd_binary_sp_4:

48 LSR R1,R1 ,#+1

49 SUBS R3 ,R3 ,#+1

50 BNE ?? gcd_binary_sp_1

51 LSL R0,R0 ,R2

52 POP {R12 ,PC}
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A.1.13 Basic Cosine SP Implementations: Intervall [0, π

2
]

Listing A.13: Basic Cosine SP Implementation

1 /*

2 Basic Single Path Cosine Implementation

3 for Interval: 0 - (PI/2)

4 */

5 cos_:

6 PUSH {LR}

7 CFI R14 Frame(CFA , -4)

8 CFI CFA R13+4

9 SUB SP,SP ,#+20

10 CFI CFA R13+24

11 STR R0 ,[SP, #+0]

12 LDR R0 ,[SP, #+0]

13 ASR R0,R0 ,#+10

14 STR R0 ,[SP, #+4]

15 LDR R0 ,[SP, #+0]

16 MOV R2 ,#+0 // start MOD_1024 procedure -

17 STR R2 ,[SP, #+0] // - (contains *MUL* procedure)

18 ASR R1,R0 ,#+10

19 STR R1 ,[SP, #+0]

20 LDR R2 ,[SP, #+0]

21 MOV R1 ,#+1024

22 CMP R2 ,#+0 // start MUL procedure

23 RSBMI R2,R2 ,#+0

24 RSBMI R1,R1 ,#+0

25 AND R3,R2 ,#0xFF

26 MUL R3,R1 ,R3

27 MOV R12 ,#+255

28 AND R12 ,R12 ,R2, ASR #+8

29 MUL R12 ,R1,R12

30 ADD R3,R3 ,R12 , LSL #+8

31 MOV R12 ,#+255

32 AND R12 ,R12 ,R2, ASR #+16

33 MUL R12 ,R1,R12

34 ADD R3,R3 ,R12 , LSL #+16

35 ASR R2,R2 ,#+24

36 MUL R2,R1 ,R2

37 ADD R1,R3 ,R2, LSL #+24 //end MUL procedure

38 STR R1 ,[SP, #+0]

39 LDR R1 ,[SP, #+0]

40 SUB R0,R0 ,R1 //end MOD_1024 procedure

41 STR R0 ,[SP, #+8]

42 LDR R0 ,[SP, #+8]

43 MOV R1 ,#+16

44 ORR R1,R1 ,#0 x2700

45 CMP R0 ,#+0 // start MUL procedure

46 RSBMI R0,R0 ,#+0

47 RSBMI R1,R1 ,#+0

48 AND R2,R0 ,#0xFF

49 MUL R2,R1 ,R2

50 MOV R3 ,#+255

51 AND R3,R3 ,R0, ASR #+8

52 MUL R3,R1 ,R3

53 ADD R2,R2 ,R3, LSL #+8

54 MOV R3 ,#+255

55 AND R3,R3 ,R0, ASR #+16

56 MUL R3,R1 ,R3

57 ADD R2,R2 ,R3, LSL #+16

58 ASR R0,R0 ,#+24

59 MUL R0,R1 ,R0

60 ADD R0,R2 ,R0, LSL #+24 //end MUL procedure

61 STR R0 ,[SP, #+0]

62 LDR R0 ,[SP, #+0]

63 ASR R0,R0 ,#+10

64 STR R0 ,[SP, #+8]
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65 LDR R1 ,[SP , #+4]

66 STR R1 ,[SP , #+12]

67 LDR R0 ,[SP , #+4]

68 ADD R0,R0 ,#+1

69 STR R0 ,[SP , #+0]

70 LDR R0 ,?? DataTable10 // cos -table

71 LDR R1 ,[SP , #+12]

72 LDR R1 ,[R0 , +R1, LSL #+2]

73 STR R1 ,[SP , #+4]

74 LDR R1 ,[SP , #+0]

75 LDR R0 ,[R0 , +R1, LSL #+2]

76 STR R0 ,[SP , #+16]

77 LDR R3 ,[SP , #+8]

78 LDR R2 ,[SP , #+16]

79 LDR R1 ,[SP , #+4]

80 LDR R0 ,[SP , #+12]

81 BL ppoint // interpol function

82 STR R0 ,[SP , #+0]

83 LDR R0 ,[SP , #+0]

84 ADD SP,SP ,#+20

85 CFI CFA R13+4

86 POP {PC}

A.1.14 Extended Cosine SP Implementation: Intervall [-2π, 2π]

Listing A.14: Extended SP Cosine Implementation

1 /*

2 Basic Single Path Cosine Implementation

3 for Interval: 0 - (PI/2)

4 */

5 cos_:

6 PUSH {LR}

7 CFI R14 Frame(CFA , -4)

8 CFI CFA R13+4

9 SUB SP,SP ,#+20

10 CFI CFA R13 +24

11 STR R0 ,[SP , #+0]

12 LDR R0 ,[SP , #+0]

13 ASR R0,R0 ,#+10

14 STR R0 ,[SP , #+4]

15 LDR R0 ,[SP , #+0]

16 MOV R2 ,#+0 // start MOD_1024 procedure -

17 STR R2 ,[SP , #+0] // - (contains *MUL* procedure)

18 ASR R1,R0 ,#+10

19 STR R1 ,[SP , #+0]

20 LDR R2 ,[SP , #+0]

21 MOV R1 ,#+1024

22 CMP R2 ,#+0 // start MUL procedure

23 RSBMI R2 ,R2 ,#+0

24 RSBMI R1 ,R1 ,#+0

25 AND R3,R2 ,#0 xFF

26 MUL R3,R1 ,R3

27 MOV R12 ,#+255

28 AND R12 ,R12 ,R2 , ASR #+8

29 MUL R12 ,R1 ,R12

30 ADD R3,R3 ,R12 , LSL #+8

31 MOV R12 ,#+255

32 AND R12 ,R12 ,R2 , ASR #+16

33 MUL R12 ,R1 ,R12

34 ADD R3,R3 ,R12 , LSL #+16

35 ASR R2,R2 ,#+24

36 MUL R2,R1 ,R2

37 ADD R1,R3 ,R2, LSL #+24 //end MUL procedure

38 STR R1 ,[SP , #+0]
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39 LDR R1 ,[SP, #+0]

40 SUB R0,R0 ,R1 //end MOD_1024 procedure

41 STR R0 ,[SP, #+8]

42 LDR R0 ,[SP, #+8]

43 MOV R1 ,#+16

44 ORR R1,R1 ,#0 x2700

45 CMP R0 ,#+0 // start MUL procedure

46 RSBMI R0,R0 ,#+0

47 RSBMI R1,R1 ,#+0

48 AND R2,R0 ,#0xFF

49 MUL R2,R1 ,R2

50 MOV R3 ,#+255

51 AND R3,R3 ,R0, ASR #+8

52 MUL R3,R1 ,R3

53 ADD R2,R2 ,R3, LSL #+8

54 MOV R3 ,#+255

55 AND R3,R3 ,R0, ASR #+16

56 MUL R3,R1 ,R3

57 ADD R2,R2 ,R3, LSL #+16

58 ASR R0,R0 ,#+24

59 MUL R0,R1 ,R0

60 ADD R0,R2 ,R0, LSL #+24 //end MUL procedure

61 STR R0 ,[SP, #+0]

62 LDR R0 ,[SP, #+0]

63 ASR R0,R0 ,#+10

64 STR R0 ,[SP, #+8]

65 LDR R1 ,[SP, #+4]

66 STR R1 ,[SP, #+12]

67 LDR R0 ,[SP, #+4]

68 ADD R0,R0 ,#+1

69 STR R0 ,[SP, #+0]

70 LDR R0 ,?? DataTable10 // cos -table

71 LDR R1 ,[SP, #+12]

72 LDR R1 ,[R0, +R1, LSL #+2]

73 STR R1 ,[SP, #+4]

74 LDR R1 ,[SP, #+0]

75 LDR R0 ,[R0, +R1, LSL #+2]

76 STR R0 ,[SP, #+16]

77 LDR R3 ,[SP, #+8]

78 LDR R2 ,[SP, #+16]

79 LDR R1 ,[SP, #+4]

80 LDR R0 ,[SP, #+12]

81 BL ppoint // interpol function

82 STR R0 ,[SP, #+0]

83 LDR R0 ,[SP, #+0]

84 ADD SP,SP ,#+20

85 CFI CFA R13+4

86 POP {PC}

A.1.15 SP Interpolation Function for Cosine Implementation

Listing A.15: SP Interpolation Function

1 /* Interpolation function including MUL and DIV Operation */

2 ppoint:

3 PUSH {R4-R7 ,LR}

4 CFI R14 Frame(CFA , -4)

5 CFI R7 Frame(CFA , -8)

6 CFI R6 Frame(CFA , -12)

7 CFI R5 Frame(CFA , -16)

8 CFI R4 Frame(CFA , -20)

9 CFI CFA R13+20

10 SUB SP,SP ,#+20

11 CFI CFA R13+40

12 SUB R0,R1 ,R2
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13 STR R0 ,[SP , #+12]

14 STR R0 ,[SP , #+4]

15 SUB R0,R2 ,R1

16 STR R0 ,[SP , #+8]

17 LDR R0 ,[SP , #+12]

18 CMP R0 ,#+1

19 LDRGE R2 ,[SP , #+4]

20 LDRLT R2 ,[SP , #+8]

21 STR R2 ,[SP , #+0]

22 LDR R0 ,[SP , #+0]

23 CMP R3 ,#+0 //start MUL_ procedure

24 RSBMI R3 ,R3 ,#+0

25 RSBMI R0 ,R0 ,#+0

26 AND R2,R3 ,#0 xFF

27 MUL R2,R0 ,R2

28 MOV R12 ,#+255

29 AND R12 ,R12 ,R3 , ASR #+8

30 MUL R12 ,R0 ,R12

31 ADD R2,R2 ,R12 , LSL #+8

32 MOV R12 ,#+255

33 AND R12 ,R12 ,R3 , ASR #+16

34 MUL R12 ,R0 ,R12

35 ADD R2,R2 ,R12 , LSL #+16

36 ASR R3,R3 ,#+24

37 MUL R3,R0 ,R3

38 ADD R0,R2 ,R3, LSL #+24 //end MUL_ procedure

39 STR R0 ,[SP , #+0]

40 LDR R0 ,[SP , #+0] //start DIV_SP procedure

41 MOV R2 ,#+0

42 MOV R3 ,#+0

43 MOV R12 ,R2

44 MOV LR ,#+32

45 MOV R4 ,#+16

46 ORR R4,R4 ,#0 x2700

47 RSB R5,R4 ,#+0

48 ?? ppoint_0: // represents label of div prodecure

49 LSR R6,R0 ,#+31

50 ORR R12 ,R6 ,R12 , LSL #+1

51 LSL R0,R0 ,#+1

52 ADD R6,R5 ,R12

53 TST R6 ,#0 x80000000

54 MOVEQ R7 ,#+1

55 MOVNE R7 ,#+0

56 CMP R12 ,R4

57 MVNCS R3 ,#+0

58 AND R7,R3 ,R7

59 ORR R2,R7 ,R2, LSL #+1

60 CMP R7 ,#+0

61 MOVNE R12 ,R6

62 SUBS LR ,LR ,#+1

63 BNE ?? ppoint_0 //end DIV_SP procedure

64 STR R2 ,[SP , #+0]

65 LDR R0 ,[SP , #+0]

66 SUB R0,R1 ,R0

67 STR R0 ,[SP , #+4]

68 LDR R0 ,[SP , #+0]

69 ADD R0,R0 ,R1

70 STR R0 ,[SP , #+8]

71 LDR R0 ,[SP , #+12]

72 CMP R0 ,#+1

73 LDRGE R1 ,[SP , #+4]

74 LDRLT R1 ,[SP , #+8]

75 STR R1 ,[SP , #+0]

76 LDR R0 ,[SP , #+0]

77 ADD SP,SP ,#+20

78 CFI CFA R13 +20

79 POP {R4-R7 ,PC}
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A.1.16 Basic Arithmetic SP Functions

Listing A.16: Single Path Integer Multiplication

1 /* Single Path Multiplicatin for 32 x 32 bit */

2 MUL_:

3 CMP R1 ,#+0

4 RSBMI R1,R1 ,#+0

5 RSBMI R0,R0 ,#+0

6 AND R2,R1 ,#0xFF

7 MUL R2,R0 ,R2

8 MOV R3 ,#+255

9 AND R3,R3 ,R1, ASR #+8

10 MUL R3,R0 ,R3

11 ADD R2,R2 ,R3, LSL #+8

12 MOV R3 ,#+255

13 AND R3,R3 ,R1, ASR #+16

14 MUL R3,R0 ,R3

15 ADD R2,R2 ,R3, LSL #+16

16 ASR R1,R1 ,#+24

17 MUL R1,R0 ,R1

18 ADD R0,R2 ,R1, LSL #+24

19 MOV PC,LR

Listing A.17: Single Path Integer Division

1 udiv_SP:

2 PUSH {R0,R4 ,R5 ,LR}

3 CFI R14 Frame(CFA , -4)

4 CFI R5 Frame(CFA , -8)

5 CFI R4 Frame(CFA , -12)

6 CFI CFA R13+16

7 MOV R3 ,#+0

8 MOV R12 ,#+0

9 MOV R2,R3

10 MOV LR ,#+32

11 ?? udiv_SP_0:

12 LSR R4,R0 ,#+31

13 ORR R12 ,R4,R12 , LSL #+1

14 LSL R0,R0 ,#+1

15 SUB R4,R12 ,R1

16 TST R4 ,#0 x80000000

17 MOVEQ R5 ,#+1

18 MOVNE R5 ,#+0

19 CMP R12 ,R1

20 MVNCS R3 ,#+0

21 AND R5,R3 ,R5

22 ORR R2,R5 ,R2, LSL #+1

23 CMP R5 ,#+0

24 MOVNE R12 ,R4

25 SUBS LR,LR ,#+1

26 BNE ?? udiv_SP_0

27 MOV R0,R2

28 POP {R3-R5,PC}

29 CFI EndBlock cfiBlock3

Listing A.18: Single Path Mod 1024 Division

1 /*

2 MODULO Div - function with fixed divisor 1024:

3 contains MUL procedure

4 */

5 mod_1024_SP:

6 SUB SP,SP ,#+8

7 CFI CFA R13+8

8 MOV R2 ,#+0
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9 STR R2 ,[SP , #+0]

10 ASR R1,R0 ,#+10

11 STR R1 ,[SP , #+0]

12 LDR R2 ,[SP , #+0]

13 MOV R1 ,#+1024

14 CMP R2 ,#+0 //start MUL

15 RSBMI R2 ,R2 ,#+0

16 RSBMI R1 ,R1 ,#+0

17 AND R3,R2 ,#0 xFF

18 MUL R3,R1 ,R3

19 MOV R12 ,#+255

20 AND R12 ,R12 ,R2 , ASR #+8

21 MUL R12 ,R1 ,R12

22 ADD R3,R3 ,R12 , LSL #+8

23 MOV R12 ,#+255

24 AND R12 ,R12 ,R2 , ASR #+16

25 MUL R12 ,R1 ,R12

26 ADD R3,R3 ,R12 , LSL #+16

27 ASR R2,R2 ,#+24

28 MUL R2,R1 ,R2

29 ADD R1,R3 ,R2, LSL #+24 //end MUL

30 STR R1 ,[SP , #+0]

31 LDR R1 ,[SP , #+0]

32 SUB R0,R0 ,R1

33 ADD SP,SP ,#+8

34 CFI CFA R13+0

35 MOV PC,LR
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A.2 Ian Kaplan - Radix two Integer Division Algorithm

Listing A.19: Radix two Interger Division

1 /* Copyright (c) - Ian Kaplan , October 1996 */
2

3 void unsigned_divide(unsigned int dividend ,
4 unsigned int divisor ,
5 unsigned int &quotient ,
6 unsigned int &remainder )
7 {
8 unsigned int t, num_bits;
9 unsigned int q, bit , d;

10 int i;
11 remainder = 0;
12 quotient = 0;
13 if (divisor == 0)
14 return;
15 if (divisor > dividend) {
16 remainder = dividend;
17 return;
18 }
19 if (divisor == dividend) {
20 quotient = 1;
21 return;
22 }
23 num_bits = 32;
24 while (remainder < divisor) {
25 bit = (dividend & 0x80000000) >> 31;
26 remainder = (remainder << 1) | bit;
27 d = dividend;
28 dividend = dividend << 1;
29 num_bits --;
30 }
31 /* The loop , above , always goes one iteration too far.
32 To avoid inserting an "if" statement inside the loop
33 the last iteration is simply reversed. */
34 dividend = d;
35 remainder = remainder >> 1;
36 num_bits ++;
37 for (i = 0; i < num_bits; i++) {
38 bit = (dividend & 0x80000000) >> 31;
39 remainder = (remainder << 1) | bit;
40 t = remainder - divisor;
41 q = !((t & 0x80000000) >> 31);
42 dividend = dividend << 1;
43 quotient = (quotient << 1) | q;
44 if (q) {
45 remainder = t;
46 }
47 }
48 }
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Abbreviations

ACET Average Case Execution Time

BCET Best Case Execution Time

CFG Control-Flow Graph

ET Event-Triggered

FPU Floating Point Unit

GCD Greatest Common Divisor

I/O Input / Output

ISA Instruction Set Architecture

NOP No Operation

TT Time-Triggered

TTP Time-Triggered Protocol

WCET Worst Case Execution Time
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