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Abstract—Satisfiability (SAT) solvers are versatile tools that
can solve a wide array of problems, and the models and proofs of
unsatisfiability emitted by SAT solvers can be checked by verified
software. In this way, the SAT toolchain is trustworthy. However,
many applications are not expressed natively in SAT and must
instead be encoded into SAT. These encodings are often subtle,
and implementations are error-prone. Formal correctness proofs
are needed to ensure that implementations are bug-free.

In this paper, we present a library for formally verifying SAT
encodings, written using the Lean interactive theorem prover.
Our library currently contains verified encodings for the parity,
at-most-one, and at-most-k constraints. It also contains methods
of generating fresh variable names and combining sub-encodings
to form more complex ones, such as one for encoding a valid
Sudoku board. The proofs in our library are general, and so this
library serves as a basis for future encoding efforts.

I. INTRODUCTION

Satisfiability (SAT) solvers are powerful and versatile tools.
They solve hardware and software verification tasks [1, 2],
they are used in satisfiability modulo theory solvers [3, 4], and
they are instrumental in resolving longstanding open problems
in mathematics [5, 6]. Impressed by their strength and utility,
Donald Knuth called SAT solvers a “killer app” [7].

Modern SAT solvers are also trustworthy. Since the SAT
problem is in NP [8], models can be efficiently checked. When
no model exists, solvers emit a certificate of unsatisfiability,
which is a step-by-step proof written in a formal proof
system [9, 10], the de facto standard being DRAT [11]. Proof
checkers can then check that the certificate is correct [12, 13].
Proof checkers are simple pieces of software; several checkers
have been formally verified [14–17].

Many applications are not expressed natively in SAT and
must instead be encoded into SAT. The challenge is that encod-
ings are often subtle, and so it is easy to make off-by-one errors
and other bugs when implementing an encoding. Detecting
errors in an encoded formula is even more challenging: in
extreme cases, encodings can contain hundreds of thousands
of variables and clauses. A single wrong variable or clause
can render the entire formula useless. One way to get rid of
bugs in encodings is to verify them in a proof assistant.

In this paper, we present a library for verifying SAT
encodings, written with the proof assistant Lean 3 [18]. So
far, we have verified encodings for the parity, at-most-one, and

This work was partially supported by the Hoskinson Center for Formalized
Mathematics and by NSF grant CCF-2108521.

at-most-k constraints. These encodings are common and are
used in applications such as cryptography [19, 20], haplotype
inference [21], and approximate model counting [22].

In addition to our correctness proofs, we discuss the
techniques we developed in our library. One major contribution
in our library is a way of introducing and managing fresh
variables, which are commonly used to minimize the number
of clauses in an encoding. Another contribution is a method of
composing constraints and encodings together to form more
complex ones while keeping correctness proofs short. We
demonstrate how these operations are used in an encoding
of Sudoku in Section VI.

II. PRELIMINARIES

Boolean variables range over the classical truth values true
(⊤) and false (⊥). Boolean literals are positive or negative
forms of boolean variables, written as x and x, respectively.
Truth assignments τ give truth values to sets of boolean
variables. When τ(x) = ⊤, then τ(x) = ⊥. If F is a
propositional formula that evaluates to true under τ , written
as τ(F ) = ⊤, then we say that τ satisfies F . If there exists a
τ that satisfies F , then F is satisfiable.

Let vars(·) be the set of variables contained in a propositional
formula. We overload vars(·) for τ to mean the set of variables
that τ is defined over. If τ and τ ′ are truth assignments such that
vars(τ) ⊆ vars(τ ′) and τ(x) = τ ′(x) whenever x ∈ vars(τ),
then τ ′ extends τ .

Most modern SAT solvers only accept formulas in con-
junctive normal form (CNF). A formula is in CNF if it is
a conjunction of clauses, with each clause a disjunction of
literals. Unless otherwise noted, when we refer to a formula
F , we assume it is in CNF.

Any problem may admit many encodings. From a mathemati-
cal point of view, the choice of encoding doesn’t matter as long
as each is correct, but in practice, solvers perform better on
encodings with fewer variables and clauses [23, 24]. Generally,
compact encodings introduce fresh variables to reduce the
overall number of clauses, but at the cost of added complexity.

In this paper, we focus on encodings of n-ary boolean
constraints. Let X = x1, . . . , xn represent the inputs to an
n-ary boolean constraint C, and let F be any propositional
formula. When vars(F ) ⊆ X , then F encodes C if and only
if it defines it: for every full assignment τ on X , we require

C(τ(x1), . . . , τ(xn)) ↔ τ(F ) = ⊤.
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Yet F may use additional variables. The following definition
handles the more general case.

Definition 1 (Encoding a boolean constraint): Let C be a
boolean constraint, F be any propositional logic formula, and
X = x1, . . . , xn be variables representing the inputs to C.
Then F encodes C if and only if: for every assignment τ on
X , C(τ(x1), . . . , τ(xn)) if and only if F is satisfied by some
assignment that extends τ .

Using the language of quantified propositional logic, this
amounts to saying that C is defined by ∃y1, . . . , ym F , where
the yi are the additional variables appearing in F . It may help
to think of the yi as auxiliary objects that are required to satisfy
their descriptions in F .

In our library, an encoding function for a constraint C takes
an input list of boolean literals and returns an encoding for
C on those literals.1 An encoding function is correct for C if
the formulas it produces encode C on all valid inputs. We will
see in Section IV that this notion of correctness will need to
be augmented to account for fresh variable generation.

III. THE CONSTRAINTS AND THEIR ENCODINGS

We now discuss the constraints and encodings that appear
in our proof library and develop the intuition for why the
encodings are correct. These intuitions form the basis for the
correctness proofs presented in Section V.

A. The parity constraint

The n-ary parity constraint is encountered in problems from
a wide range of domains, such as cryptography [19, 20],
approximate model counting [22], the creation of matrix
multiplication schemes [25, 26], and the construction of set
membership filters [27]. Many encodings for this constraint
have been proposed [26, 28–30], and to the best of our
knowledge, these encodings remain unverified. In our library,
we prove the correctness of two particular encodings: the direct
encoding and a recursive encoding.

The parity constraint concerns the true-false parity of a
set of boolean variables. Let PARITY(X) be satisfied iff an
odd number of the xi are true. One way to write PARITY in
propositional logic is with the XOR (⊕) connective, where
x ⊕ y = ⊤ iff exactly one of x and y are true. We can thus
write PARITY(X) as x1 ⊕ · · · ⊕ xn.

The first encoding we examine is the direct (or naive)
encoding. Every boolean constraint has a direct encoding that
is essentially a spelled-out truth table. Direct encodings are
sometimes chosen because they are simple to implement, since
they don’t introduce fresh variables, but they often produce
formulas with many clauses, and so they are not preferred
on large inputs. In the case of the parity constraint, its direct
encoding produces a formula with 2n−1 clauses. Such a formula
quickly becomes intractable for solvers.

1It is convenient for encoding functions to accept lists of literals as input
rather than lists of variables since that allows the inputs to be negated. This is
useful when implementing several encodings, especially recursive ones.

Definition 2 (Direct encoding of PARITY): The direct
encoding of PARITY on boolean literals X = x1, . . . , xn is

DIRECTPARITY(X) =
⋀︂

even # of negations

(︃ n⋁︂
i=1

±xi

)︃
.

To see how the encoding works, consider any assignment τ
that does not satisfy PARITY. We know by the definition of
PARITY that an even number of the xi must be true under τ .
Since the direct encoding includes every clause with an even
number of negations, we can find the clause that negates exactly
those xi that are true under τ . That clause evaluates to false
under τ . Thus, the only truth assignments that satisfy every
clause are those that set an odd number of the xi to true, which
are precisely the assignments that satisfy PARITY.

The second encoding is a recursive one loosely based on the
Tseitin transformation [31]. The Tseitin transformation takes a
propositional logic formula F and produces an equisatisfiable
CNF formula that has length linear in the size of F by
recursively introducing fresh literals via if-and-only-if relations
with sub-formulas. This method of introducing fresh variables
is used in the recursive encoding.

We first fix a cutting number k ≥ 3 to determine how to
split x1 ⊕ · · · ⊕ xn into two sub-constraints. We then replace
the first k − 1 literals with a fresh literal and recurse:

Rk(X) = (PARITY(X[1,k)) ↔ y) ∧ (y ⊕Rk(X[k,n]))

= DIRECTPARITY(X[1,k), y) ∧ Rk(y,X[k,n]),

where we get the second line by rearranging the variables
(recall that a ↔ b is equivalent to a⊕ b) and by replacing the
left instance of the parity constraint with the direct encoding.

Note that because ⊕ is commutative, we have a choice of
where to place y in the recursive step. In practice, it is common
to place y in either the leftmost or rightmost position. Encodings
that use the former method are called linear; the latter, pooled.
We prove the more general result that the encoding is correct
for any permutation of xk, . . . , xn and y.

The choice of where to place y in the recursive transforma-
tion can have a big impact on solver performance. For example,
consider an assignment that satisfies the parity constraint but
falsifies the two clauses containing the literals x1 and xn in
both encodings. The linear encoding requires O(n) updates to
its fresh literals to make the formula evaluate to true, while
the pooled encoding only requires O(log n) updates [26].

The choice of cutting number is also critical for solver
performance. When k is larger, each encoding introduces fewer
fresh variables but at a cost of larger direct encoding sub-
formulas. Applications are known for which cutting numbers
of k = 4, 6, and 7 are optimal [22, 26, 28]. In our correctness
proof, the cutting number is arbitrary.

Definition 3 (Recursive encoding for PARITY): Fix k ≥ 3,
and let p be a function that permutes lists. Then the recursive
encoding for the PARITY on literals X = x1, . . . , xn is

Rk(X) = DIRECTPARITY(X[1,k), y) ∧ Rk(p(y,X[k,n])),
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where y is fresh. When n ≤ k, the direct encoding is used
instead. The linear encoding places y in the leftmost position,
while the pooled encoding places y in the rightmost position.

Both encodings presented in this section encode the positive
form of the parity constraint. To encode its negation, which is
satisfied iff an even number of the xi are true, one can either
encode PARITY(x1, x2, . . . , xn) or introduce a fresh variable
z and add a unit clause to ensure that z is set to true in any
satisfying assignment: z ∧ PARITY(z, x1, . . . , xn).

B. The at-most-one constraint
Pseudo-boolean constraints appear in many applications for

the SAT and maximum satisfiability problems, from scheduling
to haplotype inference [21, 32–35]. One important class of
pseudo-boolean constraint is the cardinality constraint, which
can be written as

n∑︂
i=1

aixi ≤ k or
n∑︂

i=1

aixi ≥ k,

where k is a fixed constant, ai ∈ {±1}, and xi = 1 when
τ(xi) = ⊤ and xi = 0 otherwise. In our library, we assume
that all ai = 1, but we allow writing cardinality constraints in
terms of boolean literals, so the two systems are equivalent.

The at-most-one constraint (AMO) is an especially common
cardinality constraint. As its name indicates, it specifies that at
most one of the xi can evaluate to true. Many AMO encodings
have been proposed [36–40]. In our library, we prove the
correctness of the direct and sequential counter encodings.

Like for PARITY, the direct encoding for AMO is its CNF
definition. It consists of binary clauses (xi ∨ xj) that disallow
truth assignments that set both xi and xj to true. The encoding
produces

(︁
n
2

)︁
∈ O(n2) clauses and uses no fresh variables.

Definition 4 (Direct encoding of AMO): The direct encoding
of the AMO constraint on boolean literals X = x1, . . . , xn is

DIRECTAMO(X) =
⋀︂

1≤i<j≤n

(xi ∨ xj).

The sequential counter encoding [40] is a popular linear-
sized encoding. It produces 3n − 4 ∈ O(n) clauses and
introduces n − 1 signal variables that propagate the truth
value of any true xi to other signal variables to ensure that all
later xj remain false. Figure 1 shows the encoding under a
satisfying truth assignment.

Definition 5 (The sequential counter AMO encoding): The
sequential counter encoding for the AMO constraint on boolean
literals X = x1, . . . , xn is

SC(X) =

n−1⋀︂
i=1

(︃
(xi ∨ si) ∧ (si ∨ si+1) ∧ (si ∨ xi+1)

)︃
,

where the si are fresh and pairwise distinct.
In our library, we omit the clause (sn−1 ∨ sn) because sn

doesn’t appear in any other clause. Omitting the clause keeps
the number of signal variables at n− 1.

There are three kinds of clauses in the encoding. They are
logically equivalent to

(xi → si) ∧ (si → si+1) ∧ (si → xi+1).

x1

s1

x2

s2

x3

s3

x4

s4

. . .

. . .

Fig. 1. The sequential counter AMO encoding under a satisfying truth
assignment. Blue means the literal is true and red means the literal is false.
The hollow arrow heads indicate a negated implication. Notice how the signal
variables propagate that x2 is true, enforcing that all later xi must be false.

Writing the clauses like this makes it easier to see how the
encoding works. A true xi sets all following signal variables
to true, which then forces all following xj to false.

C. The at-most-k constraint

The sequential counter encoding can be generalized into an
encoding of the at-most-k constraint (AMK). It introduces a
(k + 1) × n matrix of signal variables and produces O(nk)
clauses. Clauses similar to those in the AMO encoding ensure
that the matrix tracks the cumulative number of the xi that are
true. A unit clause containing the last signal variable disallows
truth assignments that set more than k of the xi to true.

Let si, j be the signal variable on the ith row and jth column
of the matrix. The encoding ensures that si, j is set to true
when at least i of x1, . . . , xj are true. One can think of j as
defining the X[1,j] sub-array and i as the truth counter.

Definition 6 (The sequential counter AMK encoding): Let
k ≥ 2 be given. The sequential counter AMK encoding on
literals X = x1, . . . , xn is

SCk(X) =

⎛⎝ n⋀︂
j=1

(xj ∨ s1, j)

⎞⎠ ∧

⎛⎝k+1⋀︂
i=1

n−1⋀︂
j=1

(si, j ∨ si, j+1)

⎞⎠
∧

⎛⎝ k⋀︂
i=1

n−1⋀︂
j=1

(xj+1 ∨ si, j ∨ si+1, j+1)

⎞⎠ ∧ sk+1, n ,

where the si,j are fresh and pairwise distinct.
There are three types of clauses in the encoding. The first

two appear in the AMO encoding. The third kind, the ternary
clause, is logically equivalent to (xj+1 ∧ si, j) → si+1, j+1.
Whenever si, j is true, meaning that at least i of x1, . . . , xj

are true, and xj+1 is true, then si+1, j+1 is set to true. In other
words, the ternary clause propagates the truth counter up a row
in the signal variable matrix when a new xj+1 is set to true.

Figure 2 shows the encoding under a satisfying truth
assignment.

IV. LIBRARY FOR VERIFIED ENCODINGS

In this section, we present our library for verifying SAT
encodings. We used the interactive theorem prover Lean 3 [18]
(hereafter called Lean), and our library depends on Lean’s
community proof library mathlib [41]. Our library is open-
source, and all proofs and compilation instructions can be
found at the following URL:
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x1

s1,1

s2,1

s3,1

x2

s1,2

s2,2

s3,2

x3

s1,3

s2,3

s3,3

x4

s1,4

s2,4

s3,4

. . .

. . .

. . .

. . .

Fig. 2. The sequential counter AMK (k = 2) encoding under a satisfying truth
assignment. Blue means that the literal is true and red means the literal is
false. Notice how x3 being true sets a new row in the signal variable matrix
to true. A unit clause containing the top-rightmost signal variable disallows
any assignment that sets the top row of the matrix to true.

https://github.com/ccodel/verified-encodings.

Lean’s axiomatic foundation is a dependent type theory with
inductive types and a type of propositions. While Lean’s core
logic is constructive, proofs in mathlib make use of classical
logic. Our proofs do not depend on the specifics of Lean beyond
basic facts on natural numbers, functions, lists, and sets.

Variable and theorem names in this paper may differ from
those in our library since they can be verbose or cryptic. This is
due to our following Lean’s naming convention. While we have
edited names for readability, we have hyperlinked definitions
and theorems to their counterparts in our library.

A. Library preliminaries

We start our tour of the proof library by covering the basic
objects and operations we use. Most definitions are natural and
correspond to general intuition about CNF formulas, clauses,
and truth assignments and the interactions between them.

To avoid using a specific type for boolean variables, we use
an arbitrary type V that is equipped with a computable test for
equality. Literals are a sum type that are either positive (Pos
v) or negative (Neg v). Truth assignments are functions from
V to bool. Clauses and CNF formulas are represented by lists
of literals and clauses, respectively.

We define operations on these types, such as evaluation and
vars(·), and we prove theorems about those operations. All the
operations in our library are computable, meaning that Lean
can execute them on explicit instances of clauses and formulas.
As an example, consider the evaluation of clauses under a truth
assignment τ and the statement that a clause evaluates to true
under τ it has some literal that evaluates to true under τ .

def eval (τ : assignment V) (c : clause V) :=
c.foldr (λ l b, b || l.eval τ) ff

theorem clause_eval_tt_iff {τ} {c} :
c.eval τ = tt ↔ ∃ l ∈ c, l.eval τ = tt

The foldr function folds a binary operation over the elements
of a list, and l.eval τ evaluates literal l under τ . True and
false in Lean are written as tt and ff, respectively.

(The expressions c.foldr and l.eval are in Lean’s
anonymous projection notation. Because Lean infers l
to have type literal, it interprets l.eval τ as
literal.eval l τ , inserting l as the first explicit ar-
gument of the correct type. Similarly, because the type
clause V reduces to list V, Lean interprets c.foldr
as list.foldr c. We use this notation often.)

One consequence of our decision to represent truth assign-
ments as maps from V to bool is that any assignment in our
library is a full assignment. However, we have defined in this
paper that assignments are (potentially) partial maps on sets
of variables. Having assignments be full maps makes it easier
to construct and combine them, but it adds a small amount of
overhead in correctness proofs to manage the sets on which
the assignments are “defined.” It also requires us to modify
some definitions in Section II. For example, instead of saying
that τ2 extends τ1, we say that τ2 agrees with τ1 on a specified
set of variables V (agree_on). Thus, when τ1 and τ2 agree
on the variables in a clause, a formula, etc., evaluation and
other operations are equivalent under the two assignments.

A common pattern in our library is to start with an
assignment τ1 that satisfies a property on a set of variables V ,
and then “extend” it to a new assignment by setting explicit
truth values for variables not in V . One way to construct such
assignments is to use aite (short for “assignment if-then-
else”). Then, as long as the object under consideration only
has variables in (or not in) V , the aite assignment can be
reduced back to one of τ1 or τ2.

def aite (V : finset V) (τ1 τ2) :=
λ v, if v ∈ V then τ1 v else τ2 v

theorem aite_pos {V} {v} :
v ∈ V → ∀ τ1 τ2, (aite V τ1 τ2) v = τ1 v

B. Fresh variable generation and management

Almost all compact SAT encodings introduce auxiliary or
fresh variables, which are variables that don’t appear in the
input. For mathematicians (and most computer scientists),
generating fresh variables is easy: one assumes that there exists
a set with enough fresh variables and that these variables can
be chosen at will. But we have no such a priori assumption
when we use Lean. So, we took inspiration from de Bruijn
indices [42] and gensym objects [43] (such as in Lisp) to
create our own gensym object that generates fresh variables.

In our library, a gensym object is a pointer n on the natural
number line and an injective function f : N → α for α an
arbitrary type. The gensym’s pointer starts by default at n = 0,
but it can be initialized to a higher value, perhaps to avoid
variables already present in a formula. The fresh operation
provides a fresh variable under f and an updated gensym
with an incremented pointer. Batches of fresh variables can be
acquired with nfresh. Because f is injective, the generated
variables are all distinct.

A useful notion for a gensym is its stock, the set of variables
the gensym can produce. The stock S of a gensym g with
offset n is S(g) := {x : α | ∃ d ∈ N, f(n+ d) = x}.
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To ease proof burdens when proving encodings correct, we
provide lemmas that state how an updated gensym’s stock
and generated fresh variables relate to the original stock. For
example, here are two lemmas we use often.

lemma fresh_stock_subset (g : gensym V) :
g.fresh.2.stock ⊆ g.stock

lemma fresh_not_mem_fresh_stock (g) :
g.fresh.1 /∈ g.fresh.2.stock

The fresh operation returns a pair of a variable and an
updated gensym object. In Lean, the components of a pair
are accessed through the .1 and .2 notation, which are
abbreviations for .fst and .snd.

Sometimes it is more convenient to index into a gensym’s
stock rather than request fresh variables. The nth operation
takes a number i and returns the fresh variable that would
have been generated after i calls to fresh, but without
updating the gensym. Using nth makes proving correctness
more challenging, however, since many lemmas associated
with fresh cannot be applied to nth, so fresh is the
recommended operation.

An equivalent definition for gensym is to only manage
the injective function f , where calls to fresh would give
back f := (λn, f(n+ 1)). We chose the offset representation
because it is easier to reason about natural numbers in Lean
than anonymous lambda functions. For example, it is easy to
prove that g.nth i ̸= g.nth j when i ̸= j due to the
injectivity of f , whereas the proof for the alternate definition
would be a more roundabout induction proof.

C. Encodings and correctness

We now have enough tools and machinery at hand to discuss
how the encodings and their proofs of correctness appear in
our library. We start by defining when a formula encodes a
constraint. In our library, a constraint is a function from list
bool to bool. Using agree_on in place of assignment
extension, we represent Definition 1 like so:

def encodes (C) (F) (l : list (literal V)) :=
∀ τ, (C.eval τ l = tt) ↔ ∃ σ, F.eval σ = tt

∧ (agree_on τ σ (vars l))

Encoding functions take lists of literals to CNF formulas. In
our library, we require a gensym to generate fresh variables,
so we add the gensym as an explicit input and output.

def enc_fn (V : Type*) := list (literal V) →
gensym V → cnf V × gensym V

The definition of correctness follows naturally from the one
in Section II: that for any input list of literals l, the resulting
formula produced by the encoding function encodes the
constraint on l. We must also add the assumption that the
variables in l and the stock of the provided gensym are
disjoint, ensuring that the fresh variables are actually fresh.

def is_correct (C) (e : enc_fn V) :=
∀ {|l|} {|g|}, disjoint (vars l) g.stock →
encodes C (e l g).1 l

Often, proving correctness is insufficient. Many encodings
are comprised of sub-encodings, and to prove that these
composite encodings are correct, we need to know that the
sub-encoding functions “play nice” with the gensym object as
it passes from one to the next. Otherwise, the combination of
two encoding functions may result in unexpected behavior. For
example, fresh variables could be taken from the gensym’s
stock without updating the gensym, leading to variable clash
when sub-formulas are combined.

To solve this problem, we introduce a notion of well-
behavedness. Intuitively, an encoding function is well-behaved
if the variables of its formulas either come from its input list
l or from the gensym’s stock, and its output gensym is
updated to avoid those fresh variables. All the encodings in
this paper are well-behaved.

def is_wb (e : enc_fn V) := ∀ {|l|} {|g|},
disjoint (vars l) g.stock →
(e l g).2.stock ⊆ g.stock ∧
(e l g).1.vars ⊆ (vars l) ∪
(g.stock \ (e l g).2.stock)

Well-behaved encoding functions can be combined together
safely. We define an append operation, written as ++, to run
one encoding function and then the other on the same list of
input literals. If each well-behaved encoding function encodes
a constraint, then their combination is also well-behaved and
encodes the boolean-AND of the two constraints.

def append (e1 e2) : enc_fn V := λ l g,
let ⟨F1, g1⟩ := e1 l g in
let ⟨F2, g2⟩ := e2 l g1 in ⟨F1 ++ F2, g2⟩

We also define a fold operation that folds append over a list
of encodings from left to right in the natural way. Analogous
append and fold operations are defined for constraints as
well, where append is the boolean-AND of the outputs.

V. PROVING THE ENCODINGS CORRECT

In this section, we present the correctness proofs for the
encodings we presented in Section III. The proofs generally
follow the intuition of correctness given with the definition of
the encodings, but we report challenges, quirks, or surprises.

A. The parity encodings

We represented PARITY by folding ⊕ (written as bxor in
Lean) across the input. A lemma states that the constraint is
satisfied iff an odd number of inputs are true.

def parity := λ l, l.foldr bxor ff
lemma parity_eq_bodd : parity.eval τ l =

bodd (clause.count_tt τ l)

We implemented the direct encoding by adding either x1 or
its negation to each of the 2n−1 (ordered) clauses on x2, . . . , xn.
The proof of correctness is short (only about 30 lines) and
proceeds along the already given intuition: By specifying that
all clauses in the encoded formula have an even number
of negations, any falsifying assignment for PARITY has a
corresponding clause in the formula that it does not satisfy.

145

https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L207
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L217
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/gensym.lean#L260
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L233
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L29
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L237
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L243
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L183
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L221
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L73
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/cnf/encoding.lean#L113
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/parity/parity.lean#L23
https://github.com/ccodel/verified-encodings/blob/ff6467039ec69c84ab7de2a3c299e567d512e81f/src/parity/parity.lean#L50


The recursive encoding and its correctness proof are more
interesting. In Lean, we take a cutting number k and a
permutation function p and implement the encoding recursively.

def recursive_parity {k} (hk : k ≥ 3) {p}
(hp : ∀ l, perm l (p l)) : enc_fn V

| l g := if l.length ≤ k then
direct_parity l g else
let ⟨y, g1⟩ := g.fresh in
let ⟨lhd, ltl⟩ := l.split (k - 1) in
let ⟨Frec, g2⟩ := recursive_parity (
p (Pos y :: ltl) ) g1 in

⟨(direct_parity (lhd ++ [Neg y]) g1).1
++ Frec, g2⟩

The perm relation specifies whether two lists are permutations
of each other. The split operation returns two halves of the
list, split at the specified index.

The proof of correctness proceeds by strong induction
on the input list l. Let τ be the truth assignment in the
encodes judgment. The reverse direction (that if there exists
an assignment σ that agrees with τ on the variables in l and
satisfies the encoded formula, then τ satisfies PARITY) is almost
trivial. Applying the correctness proof for the direct encoding
and the induction hypothesis on the recursive sub-formula gives
two satisfied PARITY constraints. Dropping the fresh variable
y in both gives a single satisfied PARITY constraint.

The forward direction is more involved. To use the induction
hypothesis, we must show that PARITY(y,X[k,n]) is satisfied
under some truth assignment. We construct such a truth
assignment ν by extending τ to include a truth value for
the fresh variable y. If PARITY(X[k,n]) is satisfied under τ ,
then y is set to false in ν, and true otherwise. The induction
hypothesis on the sub-formula returns an assignment σ that
satisfies the sub-formula and that agrees with ν on {y}∪X[k,n].
Combining σ with τ on X[1,k) via aite finishes the proof.

The general takeaway is that for recursively-defined encod-
ings, the proof of correctness proceeds by (strong) induction
on the input list and requires the explicit setting of truth
values for one or more variables in an extended assignment,
especially among the fresh variables. Lemmas that manipulate
and reduce aite constructions are helpful, but the management
of hypotheses about set membership ultimately remains tedious.

B. The at-most encodings

We defined the AMK constraint with Lean’s list.count
operation, which counts the number of elements in a list that
match a given element. The AMO constraint is amk 1. The
at-least-k constraint ALK and the at-least-one constraint alo
are defined analogously.

def amk (k : nat) := λ l, l.count tt ≤ k

We implemented the direct encoding for AMO as a recursive
function. Because the direct encoding doesn’t require any
fresh variables, we defined a base function direct_amo’
to produce the formula. The actual encoding function passes
the gensym through untouched.

def direct_amo’ : list (literal V) → cnf V
| [] := []

| (lit :: ls) := (ls.map (λ m,
[lit.flip, m.flip])) ++ (direct_amo’ ls)

The correctness proof is straightforward and proceeds by
relating both the AMO constraint and the clauses in the direct
encoding to the truth value of any two elements in distinct
positions in the list via a distinct proposition we defined.

def distinct {α} (a1 a2 : α) (l : list α) :=
∃ (i j : nat) (Hi : i < l.length)
(Hj : j < l.length), i < j ∧
l.nth_le i Hi = a1 ∧ l.nth_le j Hj = a2

We now discuss the sequential counter encodings, starting
with the AMO encoding. Unlike for the recursive encoding
for PARITY, the AMO encoding isn’t inherently recursive,
but the three clauses have the same form for each i, so a
recursive implementation is possible. However, a non-recursive
implementation may allow for lemmas that better capture the
global behavior of the signal variables. We implemented both
a recursive and non-recursive encoding function in our library
to compare the proof efforts of the two methods.

The non-recursive sc_amo uses three helper functions that
each generate one of the three types of clauses. We provide
one of them, xi_to_si, below as an example. We omit the
cases where the input list has cardinality at most one.

def sc_amo : enc_fn V
| l g := let n := length l in

⟨join (map_with_index (λ idx lit,
xi_to_si g n idx lit ++
si_to_next_si g n idx ++
si_to_next_xi g idx lit) l),

(g.nfresh (n - 1)).2⟩

def xi_to_si (g) (n i : nat) (lit) : cnf V :=
if i < n - 1 then
[[lit.flip, Pos (g.nth i)]] else []

The function map_with_index applies a function to
each element in a list along with its index in the list. We
use map_with_index to access the corresponding signal
variable for each literal in l. The function join flattens a list
of lists into a single list.

In the recursive implementation sc_rec, we generate a
fresh signal variable y at each recursive level. We also generate
a second fresh variable z since we need to produce a clause
with two adjacent signal variables, but the gensym given to
the recursive call is the one that was produced by a single call
to fresh. We once again omit the trivial cases.

def sc_rec : enc_fn V
| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in
⟨[[l1.flip, Pos y], [Neg y, l2.flip]], g1⟩

| (l1 :: l2 :: ls) g :=
let ⟨y, g1⟩ := g.fresh in
let ⟨z, _⟩ := g1.fresh in
let ⟨F’, g2⟩ := sc_rec (l2 :: ls) g1 in
⟨[[l1.flip, Pos y], [Neg y, Pos z],

[Neg y, l2.flip]] ++ F’, g2⟩

The correctness proof for sc_rec proceeds by induction on
the input list l. For the forward direction, the proof strategy is
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similar to the one for recursive_parity. An assignment
that extends the given τ is constructed by setting the truth
value for signal variable s1 to τ(x1). If s1 is set to true, then
the assignment that sets all signal variables to true is proved
to satisfy the formula. Otherwise, s1 is set to false in the
extended assignment, and the induction hypothesis gives back
an assignment σ that satisfies the recursive sub-formula. An
aite construction finishes the proof.

Now the reverse direction. If τ(x1) is true, then we use
a lemma stating that because τ satisfies the formula, all
other xi must be false under τ (due to all signal variables
being true). Otherwise, the induction hypothesis gives that
AMO(x2, . . . , xn) is satisfied under τ , and since τ(x1) is false,
the full constraint is satisfied.

The correctness proof for the non-recursive sc_amo re-
quired engineering that was not present in the proof for
sc_rec. The additional engineering contributed to the proof
being 50% larger (300 vs. 200 lines).

In the forward direction, we supply an explicit truth assign-
ment sc_tau that provides the truth values for all signal
variables at once. A helper function var_idx extracts the
index i for each provided signal variable. Proving that sc_tau
satisfies the encoded formula was straightforward but tedious.

For the reverse direction, if no xi is true under τ , then of
course the AMO constraint is satisfied. Otherwise, the proof uses
lemmas showing that the signal variables propagate the truth
value of xi appropriately. Because the lemmas were stated in
terms of “if xi is true, then all later xj are false,” distinct
was used to finish the proof.

There are two main takeaways. The first is that the recursive
implementation and its correctness proof are more compact
than the non-recursive version’s. Because the fresh variables
generated at each recursive level are largely independent, the
induction hypothesis can be leveraged effectively.

The second takeaway is that much of the proof overhead
in the non-recursive case came from managing hypotheses
about set membership among the fresh variables (i.e., that they
are disjoint from the literals in l and the updated stock, and
that they were distinct from each other). As we developed our
library, we added more lemmas to ease these proof burdens, but
ultimately, proving facts like g.nth i /∈ l.take j when
g.stock and l are disjoint will persist. Future work could
address this burden by automating the proving of these facts.

We implemented the AMK encoding in a non-recursive
manner analogous to sc_amo. Since the implementation and
correctness proof are so similar, we omit the details.

VI. ENCODING SUDOKU

To demonstrate the use of our proof library, we implemented
an encoding for the Sudoku problem using AMO sub-encodings.
Because the encoding was formed by composing well-behaved,
correct sub-encodings, its correctness proof was only 15 lines.
In addition, it uses an abstract sub-encoding amo_enc that
can be defined to be any correct sub-encoding, which happily
agrees with the mathematical view of encodings.
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Fig. 3. A 9-by-9 Sudoku puzzle (left) and its unique solution (right). Every
row, column, and 3-by-3 subgrid that compose the grid must have exactly one
each of the numbers 1 through 9.

Sudoku is a classic Japanese puzzle where one must fill in
a number between 1 and 9 in every cell in a 9-by-9 grid such
that every row, column, and 3-by-3 subgrid comprising the grid
must contain each number 1 through 9 exactly once. Numbers
present in the grid from the start define a single unique solution
to the puzzle. Figure 3 depicts a difficult Sudoku puzzle and
its solution. The general Sudoku problem is parameterized by
n, the side length for a single subgrid. In the figure, n = 3.

One encoding for Sudoku is to use AMO constraints for each
cell, row, column, and square, along with an ALO constraint
on each cell. Let X = {xr,c,k} be the set of boolean variables
used in the encoding. Setting xr,c,k to true means placing
number k in the cell in row r and column c. Each of r, c,
and k run from 1 to n2, making a total of n6 variables. For
example, the AMO constraint on the rows would look like

n2⋀︂
r=1

n2⋀︂
k=1

AMO(xr,1,k, . . . , xr,n2,k).

Implementing the Sudoku encoding in Lean using the
machinery we’ve discussed so far seems challenging. At first
blush, it looks like the append operation could combine all
the sub-encodings together, but append combines encodings
that share an input list of literals. In the Sudoku encoding
discussed above, each ALO and AMO constraint is expressed
on a different subset of the n6 variables in X . So append
won’t work without some modification.

Our solution is to compose each ALO and AMO encoding
function with a function filter_by_idx that filters out
indexes in a list that don’t satisfy a given predicate. This way,
all of the encoding functions can be folded together, since each
will extract the literals it needs. An example of one predicate we
use, is_cell_lit, returns whether a list index corresponds
to one of the literals associated with a particular cell. The filter
functions help define the sub-constraints on each cell, row,
column, and square on the Sudoku board.

def is_cell_lit (n row col : nat) := λ idx,
idx ∈ (range (nˆ2)).map (λ num,

(row * nˆ4) + (col * nˆ2) + num)

The function range k returns a list [0, 1, . . . , k − 1].
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(The presentation of is_cell_lit above elides many
bookkeeping details. For instance, we use Lean’s fin type
instead of nat. However, the logical core is the same.)

In the spirit of Wadler’s “Theorems for Free!” [44], the
correctness and well-behavedness of encoding functions are
preserved under operations on arbitrary lists, such as permu-
tation and element copying and deletion, since our notion of
correctness refers only to the values in the list and not the
list itself. We use the theorem that filter_by_idx, which
returns a sublist of its input, preserves an encoding function’s
correctness to prove the Sudoku encoding correct.

We can now define the Sudoku constraint. We note that
while the constraint isn’t the most efficient one possible, it is
the most natural, and the redundant clauses in the encoded
formula help SAT solvers in practice. The encoding is defined
almost identically by swapping in the abstract encoding function
amo_enc in place of the sub-constraints.
def is_valid_sudoku (n : nat) :=
let L := cart_prod (nˆ2) (nˆ2) in
fold (L.map (λ ⟨r, c⟩, is_cell_valid r c)) ++
fold (L.map (λ ⟨c, k⟩, is_row_valid c k)) ++
fold (L.map (λ ⟨r, k⟩, is_col_valid r k)) ++
fold ((cart_prod n n).zip

(fin.range (nˆ2))).map
(λ ⟨⟨sr, sc⟩, k⟩, is_subgrid_valid sr sc k)

We omit a check by the function len_check, which en-
sures that the constraint only accepts lists of appropriate
length (of length n6). The function cart_prod returns
a list of pairs representing the Cartesian product of the
universe of fintypes. For example, cart_prod 2 3 =
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)].

To demonstrate Lean’s ability to produce these encodings,
we had Lean generate and save the Sudoku encoding to a file
in DIMACS format, which can then be sent to conventional
SAT solvers. The file can be found in our library.

VII. RELATED WORK

We are not the first to verify SAT encodings using a
proof assistant. Our work is most similar to Giljegård and
Wennerbreck’s library for verified SAT encodings [45], written
in CakeML [46]. In their library, they verified the correctness of
the naive AMO encoding, several encodings of pseudo-boolean
constraints, and the Tseitin transformation for turning arbitrary
propositional logic formulas into CNF. They also provide a
way to translate mathematical objects (e.g., unordered sets and
natural numbers) into SAT analogues, which helps with the
writing of encodings. They then applied their verified encodings
to logic puzzles like the n-queens problem and Sudoku variants.

Our work improves on Giljegård and Wennerbreck’s library
in two main regards. The first is our richer set of operations
and theorems on CNF objects. For example, constructing
composite truth assignments with aite is crucial for proving
the correctness of encodings that introduce fresh variables.

The second improvement is our library’s management of
fresh variables. While Giljegård and Wennerbreck’s library also
generates fresh variables to implement the Tseitin transforma-
tion, their reasoning about fresh variables is specialized to the

Tseitin transformation, as it is the only place in their library
where fresh variables are used. What’s more, they state that
they did not implement more-efficient encodings for pseudo-
boolean constraints due to the challenges of fresh variable
management. Our library solves this problem.

Our work also shares similarities with Luı́s Cruz-Filipe,
et al.’s work on an end-to-end verification of the encoding
of the Pythagorean triples problem [47]. They verified the
encoding, and additional symmetry breaking techniques, in
Coq [48]. Their types for literals, clauses, and CNF formulas
are identical to ours, and their notion of encoding correctness
agrees with our definition. However, because the encoding they
verified did not introduce fresh variables, they did not develop
any infrastructure for managing fresh variables.

Other verification efforts are domain-specific and mainly
translate other logical systems into SAT [49–51]. For example,
Ishii and Fujii verify an encoding of SAT-based model checking
in Coq. They formalize methods such as k-induction and
property-directed reachability to check the safety of state-
transition systems, and then they prove the soundness of
converting safety properties expressed using these methods
into SAT. By taking in a fixed number of transitions k, they
express the safety properties in terms of a finite logical formula,
which is then converted into propositional logic.

Our work has already seen application beyond this paper.
Holliday, Norman, and Pacuit [52] used our library to verify
their SAT encoding of problems in voting theory.

VIII. CONCLUSION AND FUTURE WORK

Our library has laid the groundwork for formally verifying
SAT encodings. The encodings we verify are efficient in
practice, even at large scales, and we have made efforts to
develop a framework that is general, extensible, and easy to use
in practice. So far, we have verified the correctness of encodings
for the parity, at-most-one, and at-most-k constraints and an
encoding of Sudoku. To do so, we developed methods of
generating fresh variables, constructing extended assignments,
and combining sub-encodings, and we proved lemmas that
allow us to reason about these operations.

Despite our progress, there is still much left to do. We plan
to upgrade our library to Lean version 4, which offers better
automation and linking to SAT and satisfiability modulo theory
solvers. We will also rewrite our gensym in terms of a state
monad to simplify writing encodings. Finally, many encodings
are still unverified. For example, a wide number of SAT-
solving applications require efficient encodings of cardinality
constraints [40, 53], pseudo-boolean constraints [54, 55], and
symmetry-breaking predicates [56, 57].

In the long run, our goal is to provide tools so that any claim
established with a SAT solver can be fully verified from start to
finish. Increasingly-complex mathematical theorems and claims
about hardware and software are being reduced to propositional
search problems, and these reductions are becoming more
subtle and involved. Interactive theorem proving therefore has
an important role to play, and our goal is to develop a library
that can adequately support the task.
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