
Formal Methods in Computer-Aided Design 2023

Mariposa: Measuring SMT Instability in
Automated Program Verification

Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn Heule, Bryan Parno
Carnegie Mellon University, Pittsburgh, PA, USA

{yeet,jaybosamiya,ytakashi,jgli,marijn,parno}@cmu.edu

Abstract—Program verification has been successfully
applied to increasingly large and complex systems. Much
of this recent success can be attributed to the automation
provided by dispatching verification condition queries via
SMT solvers. However, multiple teams anecdotally report
that this style of automated verification is plagued by proof
instability, where semantically irrelevant changes to the
query can have large effects on the SMT solver’s response.

In this work, we present Mariposa, a tool to detect and
quantify instability. To better understand the status quo
of instability, we apply Mariposa to a set of 17,043 SMT
queries from six existing program verification projects. We
discover that SMT solver upgrades often make projects
less stable, and that the most recent SMT solver version is
unstable on 2.6% of the queries. For individual projects, the
unstable ratio can grow to 5.0%. Based on our experimental
results, we curate the Mariposa benchmark, which we hope
will help measure and incentivize stability improvements
in SMT-based program verification.

I. INTRODUCTION

Software verification can statically guarantee a pro-
gram’s correctness, reliability, and/or security. In recent
years, we have seen significant progress scaling software
verification up to large, practical programs, both in
academia [1–8] and industry [9–11].

Much of this success relies on Satisfiability Modulo
Theories (SMT) solvers [12–15]. The developer writes
specifications, proofs, and code, which are transformed
into a verification condition [16], expressed as a query
in the SMT-LIB [13] format. The SMT solver then does
the heavy lifting by checking the verification condition,
essentially verifying that the code meets its specification.
In practice, this process is iterative: when a query fails,
the developer adjusts the specifications, proofs, and/or
code until the updated query is accepted and the devel-
oper moves on to the next code region.

Unfortunately, automated program verification suffers
from proof instability [11, 17, 18], where seemingly
irrelevant changes to the verification condition can cause
notable variation in SMT solver performance. For exam-
ple, simply renaming a source-level variable may cause a
verified procedure to take orders of magnitude longer to
verify, or even to fail to verify at all. In either case, the
developer must tediously supply additional proof hints

that attempt to steer the SMT solver back towards a fast
and successful verification result.

Instability poses a significant challenge for large-
scale, industrial-level program verification. Concretely,
in the verification projects we study, we find up to
5% of queries to be unstable with the most recent
SMT solver version (Section IV-D). For developers, such
instability disrupts their iterative workflow, as it substan-
tially lengthens their code-prove-debug cycle. Moreover,
spurious failures may require developers to fix issues
that arise in code or proofs they did not write and may
not even understand. In a large team of developers, this
problem is amplified, as independent and concurrent
changes to the codebase potentially create instability
that is only visible after changes are merged. In short,
instability impedes monotonic progress in developing a
verified codebase.

While the program verification community has rec-
ognized the issue of instability [11, 17, 18], popular
automated verification tools like Dafny [19] and F⋆ [20]
only offer heuristic options to identify it [21, 22]. Fur-
thermore, our results show that these heuristics only
capture a fraction of the problem (Section IV-D).

In the SMT community, SMT-COMP [23], the annual
competition for SMT solvers, does not include any
benchmarks for evaluating stability. Possibly as a result,
the stability of some program verification projects actu-
ally deteriorates with solver upgrades (Section IV-D).

We believe there is a need for a systematic study of
the instability phenomenon, where concrete data and sta-
tistical analysis can inform both the program verification
and SMT communities. A robust measurement method-
ology can help program verification frameworks adapt
their query-generation strategy to avoid issuing unstable
queries. For SMT solvers, a benchmark for measuring
instability would help evaluate strategies for mitigating
it, as well as help prevent stability regressions. In this
work we fill this need with the following contributions.
• We present a methodology (and a concrete tool named

Mariposa1) to detect and quantify SMT-based proof
instability (Section III).

1Mariposa is Spanish for butterfly. The name is inspired by the
butterfly effect, where small changes can have large effects.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_26 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_26
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_26
https://creativecommons.org/licenses/by/4.0/


• We perform a detailed empirical study analyzing the
(in)stability of six projects written in three program
verification frameworks across multiple SMT solver
versions (Section IV). The study generates over three
million SMT queries that consume ∼ 578 CPU days.

• We distill our study’s queries into the Mariposa bench-
mark to facilitate future research on measuring and
mitigating instability (Section V).

• Our study quantifies anecdotal reports of SMT in-
stability, showing that it affects a non-trivial number
of queries and often grows worse with new solver
versions. We also find that multiple mutation methods
are needed to uncover unstable proofs.
The SMT queries and results from our experiments,

the source code for the Mariposa tool, and the Mariposa
benchmark are all publicly available: https://github.com/
secure-foundations/mariposa.

II. RELATED WORK

To the best of our knowledge, the problem of SMT
proof instability was first reported by the developers of
Ironclad Apps [17], who noticed instability in certain
non-linear integer arithmetic queries. In the later Ko-
modo work [24], instability was described as “the most
frustrating recurring problem.” More recently, Galois
highlighted the “fragility of proofs” as a challenge in
formally verified industry cryptography [11].

Leino and Pit-Claudel studied the problem of SMT
instability in the specific context of Dafny quantifier
instantiation [18]. They investigated trigger loops as
a possible source of instability, improved algorithms
for trigger selection, and then used ad hoc instability
measures to evaluate the impact of their algorithms.

The SAT Competition [25] and SMT-COMP [23]
may perform benchmark scrambling before evaluating
the solvers’ performance. Scrambling involves syntactic
transformations similar to our query mutations (Sec-
tion III). However, scrambling is not sufficient (nor in-
tended) to characterize stability. Prior work has examined
the impact of scrambling on competition results [26, 27].

Most work on testing SMT solvers focuses on finding
unsoundness bugs [28–33]. One exception is Janus [34],
which finds incompleteness bugs, where a query unex-
pectedly returns unknown, placing it closer to our work.
However, Janus does not offer a metric for instability, nor
does it target program verification queries.

III. METHODOLOGY

In this section, we outline our methodology for char-
acterizing proof instability. At a high level, our goal is
to answer two main questions for a given query Q and
solver S: (1) Is Q stable or unstable under S? and (2) How
stable or unstable is it?

Intuitively, instability means that the performance of S
diverges when seemingly irrelevant mutations are applied
to Q. Our methodology, detailed below, follows this intu-
ition. First, we characterize the queries of interest, drawn
from prior program verification projects (Section III-A).
Next, we describe the mutations chosen for our study
and the rationales behind the choices (Section III-B).
We then propose a scheme to differentiate stable and
unstable queries (Section III-C), addressing question (1)
above. Finally, we elaborate on metrics used to quantify
stability (Section III-F), addressing question (2).

A. Characterizing Program Verification Queries
This study focuses on queries from automated verifica-

tion projects, where instability is problematic. Here, we
describe their general characteristics, which might differ
from those in other domains, such as symbolic execution
or model checking. We discuss the specific verification
projects chosen for our study in Section IV-B.

Relevant Logics. Program verification queries involve
a mixture of bit-vector, integer arithmetic, and uninter-
preted functions, typically with quantifiers. There is no
single SMT-LIB logic (e.g. QF_UF or NIA) that captures
these at the same time, and thus program verification
queries commonly use the ALL logic.

Expected Query Result. The goal of program ver-
ification is to prove that a property holds in all cases.
Therefore, the SMT query is formulated as the negation
of the desired property, such that a successful proof is
indicated via an unsat result. Intuitively, if the result
is sat, then the property is violated in at least one case
(the satisfying assignment). For this study, the expected
result is always unsat, which means that the property
holds in all cases (i.e., the program verifies).

Expected Response Time. As discussed in Section I,
the process of developing verified software is iterative.
Given that the developer is blocked while the solver is
running, the solver’s run time should be in the responsive
range of human interaction. For most of the projects in
our study, the solver time limits used during development
are under 30 seconds.

B. Mutation Methods
In this study, we focus on mutation methods that

yield queries that are both semantically equivalent and
syntactically isomorphic; i.e., the original query Q and its
mutated version Q′ share the same semantic meaning and
syntactic structures. Hence it seems reasonable to expect
similar performance from the solver on both queries.

Semantic Equivalence. Q and Q′ are semantically
equivalent when there is a bijection between the set of
proofs for Q and those for Q′. In other words, a proof of
Q can be transformed into a proof of Q′, and vice versa.

Syntactic Isomorphism. Q and Q′ are syntactically
isomorphic if there exists a one-to-one correspondence

179

https://github.com/secure-foundations/mariposa
https://github.com/secure-foundations/mariposa


between the symbols (e.g., variables) and commands
(e.g., assertions). In other words, each symbol or com-
mand in Q has a counterpart in Q′, and vice versa.

For our concrete experiments, we are interested in
mutations that also correspond to common developer
practices. Specifically, we consider the following three
mutation methods:
• Assertion Shuffling. Reordering of source-level lem-

mas or code methods is a common practice when
developing verified software. Such reordering roughly
corresponds to shuffling the order of commands in
the generated SMT query. Specifically, SMT queries
introduce constraints using the assert command.
Shuffling the order in which the constraints are de-
clared guarantees syntactic isomorphism. Further, the
order within a local context is irrelevant to the query’s
semantics.

• Symbol Renaming. It is common to rename source-
level methods, types, or variables, which roughly
corresponds to α-renaming the symbols in the SMT
queries. Renaming preserves semantic equivalence and
syntactic isomorphism, as long as the symbol names
are used consistently.

• Randomness Reseeding. SMT solvers optionally take
as input a random seed, which is used in some of
their non-deterministic choices. Changing the seed
has no effect on the query’s semantics but is known
to affect the solver’s performance. Historically, some
verification tools have attempted to use reseeding to
measure instability: Dafny2 and F⋆ have options to run
the same query multiple times with different random
seeds and report the number of failures encountered.
When a mutation method is exhaustively applied to a

query Q, it produces a set of mutated queries MQ, which
also includes Q itself. Consider assertion shuffling as an
example. If Q contains 100 assertions, then MQ would
have 100! ≊ 9×10157 permutations of Q. We refer to Q
as the original query and members of MQ as mutants.

C. Detecting Stability

Intuitively, stability is a performance property over
MQ. That is, whether a query-solver pair (Q,S) is stable
or not depends on how the mutants perform. To sim-
plify the discussion, we assume for now that a single
mutation method, such as assertion shuffling, is used. In
Section III-E, we discuss how to aggregate results from
multiple mutation methods.

Mutant Success Rate. A natural performance metric
is the success rate of solver S over MQ. More precisely,
it is the percentage of queries in MQ that are proven (i.e.,
that return the expected unsat result).

2Dafny has recently started to perform shuffling and renam-
ing. The option has changed from randomSeedIterations to
randomizeVcIterations.

0% 100%rsolvable rstable

consistently
poor

consistently
goodinconsistent

Mutant Success Rate (r)

Fig. 1. Intuition for Our Stability Categories. (S,Q) is a solver-
query pair. r is the mutant success rate. When r < rsolvable, Q is not
solvable under S. When r > rstable, Q is stable under S. Otherwise, Q
is unstable under S.

The success rate, which we denote by r, reflects
performance consistency. A low r indicates consistently
poor results; a high r indicates consistently good results;
and a moderate r indicates inconsistent results, i.e.,
instability. This intuition is illustrated in Figure 1.

We thus define four stability categories using the
success rate r. The scheme includes two additional
parameters: rsolvable and rstable, which correspond respec-
tively to the lower and upper bounds of the success rate
range for unstable queries.
• unsolvable. Q is too difficult for solver S (r <

rsolvable). For example, if S gives up and returns
unknown for all members of MQ, we may conclude
that S is unable to solve Q or any version of it.

• unstable. S cannot consistently find a proof in the
presence of mutations to Q (rsolvable ≤ r < rstable).

• stable: S proves MQ consistently (r ≥ rstable).
• inconclusive: statistical tests do not result in

enough confidence to draw a conclusion.
Mutant Sampling. In practice, it is often intractable

to enumerate all members of MQ (recall the 100! mutants
from our shuffling example), so r is generally unknown.
Therefore we use statistical tests to estimate r from a
sample of mutants. We use M̂Q and r̂ to denote sample
mutants and sample success rate, respectively.

Our scheme is based on comparing proportions, so we
use the Z-test [35], which is a commonly used statistical
test to make inferences about the true proportion of a
population based on a set of samples. The test is param-
eterized by the alpha level, which specifies confidence
in its result. We use an alpha level of 0.05 (i.e., 95%
confidence), which is a standard choice.

Figure 2 shows our proposed workflow for categoriz-
ing the stability of a query-solver pair. For a statistical
test (shown as a trapezium shape), if we reject the null
hypothesis (H0), there is enough confidence to conclude
that the alternative hypothesis (HA) is true. For example,
in the Instability Test, if we reject H0, we are 95%
sure that HA is true, i.e., r < rstable. However, failing
to reject H0 simply means the result is not statistically
significant. That is, failing the Instability Test does not
imply stability. Hence, we test again using the opposite
hypothesis. If the test is still not significant, we do not
have a conclusive result.

180



Q,S

Solvability Test
H0 : r ≥ rsolvable
HA : r < rsolvable

Instability Test
H0 : r ≥ rstable
HA : r < rstable

Stability Test
H0 : r < rstable
HA : r ≥ rstable

Tolerance Test
T̂ ≥ ωTlimit

unsolvable

unstable

stableinconclusive

estimate r from M̂Q

low confidence

low confidence

low confidence

reject H0

reject H0

reject H0

noyes

Fig. 2. Flowchart for Stability Categorization. We output a stability
category based on the performance of the mutants though a series of
hypothesis tests. An additional tolerance test is used to filter out queries
that are finishing close to the time limit Tlimit.

A natural goal to make is to pick a sufficiently
large sample size such that very few cases are
inconclusive. As a sanity check, we expect to con-
clude unsolvable (r < rsolvable) if no sample mutant
succeeds (r̂ = 0%) using an alpha level of 0.05.

We thus calculate the required sample sizes for differ-
ent values of rsolvable. For rsolvable = 1%, we need 269
mutants to be 95% sure that the true success rate is
less than 1%. On the other hand, if rsolvable = 5%, 60
mutants are more than enough. Similarly, we expect to
conclude stable if the sample success rate r̂ is 100%.
We note this is symmetric to the previous scenario, and
thus, to conclude stable (r ≥ 95%), 60 sample mutants
all succeeding (r̂ = 100%) is sufficient.

For our experiments, we use rsolvable = 5%, rstable =
95%, and 60 mutants for each mutation method.

D. Accounting for Time Limits

Since there is no guarantee that a solver will terminate,
we impose a time limit Tlimit on all of our experiments.
Solvers may allow the user to bound the solver execution
with a resource limit (rlimit) instead of a time limit, in
an effort to make results more consistent across machines
with different computational abilities. However, the re-
source tracking often counts only some of the resources
used (e.g., it may ignores resources spent inside a theory
solver). Further, there is no guarantee of consistency
across solver versions, let alone across different solvers.
Hence, in this work Mariposa uses execution time as a
more universal measure.

In the categorization scheme, a mutant that times out
is considered a verification failure. However, when the

expected response time of MQ is close to the time limit,
small deviations in the response time can push some
mutants into failure. This might give a false impression
of instability, while in reality the solver behaves stably
given enough time.

To address this issue, we further parameterize the
categorization scheme with a tolerance factor ω between
0 and 1. When mixed results are observed in the samples
M̂Q, we estimate the expected response time for MQ
using the mean response time of successful samples,
denoted as T̂ . If the latter is close to the time limit, i.e.,
T̂ ≥ ωTlimit, the failures may be due to an insufficient
Tlimit. In that case, we take a conservative approach and
do not label (Q,S) as unstable.

Figure 2 shows the tolerance test in the workflow.
In our experiments, we use ω = 0.8, and Tlimit = 60s.
Section IV gives a more detailed analysis of the impact
of Tlimit.

E. Results from Different Mutation Methods
The discussion about the workflow thus far has been

based on a single mutation method. In our study, we
consider shuffling, renaming, and reseeding, each of
which outputs a stability category through our scheme.
We use the following procedure to combine the results.
1) If the results are unanimously inconclusive, out-

put inconclusive.
2) Remove inconclusive results. If the rest are

unanimously X , output X .
3) Otherwise output unstable.

Note that if the mutation methods disagree on the
categories, the procedure returns unstable. For exam-
ple, if shuffling outputs stable, but reseeding outputs
unsolvable, then the final result is unstable. In
Section IV we show how mutation methods differ in
their ability to detect instability.

F. Quantifying (In)stability
Given a query-solver pair (Q,S), we use the cate-

gorization scheme to answer the question of whether
the pair is stable. To quantify the instability of an
unstable pair, we simply use the Mutant Success
Rate (from Section III-C) as a metric, where higher
values are preferable.

To quantify the stability of stable queries, we use
the Standard Deviation of Mutant Response Times.
As discussed in Section I, increased response time im-
pedes the iterative development cycles. Therefore, even
if a query-solver pair is consistently producing the same
verification result, a large variation in response time
is still undesirable to the developer. Moreover, such
variation is indicative of potential instability: if the time
limit is shortened by a small amount, some mutants may
fail to finish in time. Therefore, the larger the standard
deviation, the less stable (Q,S) actually is.

181



IV. EXPERIMENTS

We have presented a general methodology to detect
and quantify SMT-based proof instability. To better un-
derstand the status quo of instability, we implement our
methodology in the Mariposa tool and use it to perform
experiments on existing program verification projects.

In this section, we first describe the experimental
setup, which includes an overview of the Mariposa tool
(Section IV-A), the verification projects studied (Sec-
tion IV-B), and the configurations used (Section IV-C).
We then present the experimental results, which are or-
ganized as a series of research questions (Section IV-D).

A. The Mariposa Tool

We implement our methodology in Mariposa, a tool
for SMT stability testing. In its basic use case, Mariposa
inputs a query-solver pair (Q,S), performs mutations on
Q, runs S on the mutants, analyzes the performance data,
and outputs the stability category and metrics.

For efficient manipulation of queries, the mutations
are implemented using Rust (∼200 LoC). The scripts
for running the mutants, recording performance, and
analyzing data are implemented in Python (∼2K LoC).

Mariposa is extensible, so new mutation methods can
be easily added. Mariposa is also configurable, allowing
the user to specify parameters such as the number of
mutants, the time limit, etc.

B. Projects Under Study

We experiment with prior automated program verifica-
tion projects. For verification tools, we mainly focus on
F⋆ [20] and Dafny [19], since (1) they have been used to
develop complex verified systems; (2) each has an active
community of users; (3) they are actively maintained.
We then select the following projects and extract all of
the SMT verification queries they generate.
• KomodoD. Komodo [24] is a security hypervisor veri-

fied and implemented in Dafny, a general-purpose pro-
gram verifier that often generates undecidable queries.

• KomodoS. Another research team reimplemented parts
of Komodo using the Serval framework [2], which re-
quires developers to work within a decidable fragment
of first-order logic. For example, recursive functions
and loops must be statically bounded. The goal is for
developers to write fewer proofs, but one might also
conjecture that using a simpler logic would lead to
greater query stability.

• VeriBetrKVD. VeriBetrKV [3] is a key-value store
based on a Bε tree [36], implemented and verified in
Dafny. VeriBetrKVD uses Dafny’s standard dynamic
frames [37] for heap reasoning.

• VeriBetrKVL. In a follow-up study [38], researchers
modified the VeriBetrKV code base to use a cus-
tomized Dafny version that employs linear types for

Project Source LoC Query Count

KomodoD 26K 2,054
KomodoS 4K 773
VeriBetrKVD 44K 5,325
VeriBetrKVL 49K 5,600
DICE⋆

F 25K 1,536
vWasmF 15K 1,755

TABLE I
BASIC STATISTICS ON PROJECTS USED IN OUR EXPERIMENTS

heap reasoning. They found that using linear types
results in faster queries. We explore whether linear
types also result in more stable queries.

• DICE⋆
F . DICE is an industry standard measured boot

protocol [39]. DICE⋆ [40] is a provably-correct im-
plementation of the protocol in F⋆.

• vWasmF . WebAssembly (Wasm) is a portable bi-
nary instruction format for web applications [41].
vWasm [42] is a provably-safe sandboxing compiler
from Wasm to native code, implemented in F⋆.
These project all exhibit non-trivial complexity. The

source lines of code (LoC) and query counts for each
project are summarized in Table I.

C. Experiment Configurations

We run the experiments on machines with an Intel
Core i9-9900K (max 5.00 GHz) CPU, 128 GB of RAM,
and the Ubuntu 20.04.3 LTS operating system. Recapit-
ulating earlier parameter settings, we set Tlimit = 60s; 60
samples per mutation method; an alpha level of 0.05;
ω = 0.8; rsolvable = 5%; and rstable = 95%.

For our experiments, we focus on the Z3 SMT
solver [14], which all of our experiment projects were
developed with, except for KomodoS, which used both
Z3 and CVC4 [43]3. We are interested in both the
current and historical status of SMT stability. Therefore,
in addition to the latest Z3 solver (version 4.12.1, as of
this writing), we include seven legacy versions of Z3,
with the earliest released in 2015. In particular, for each
project we include its artifact solver, which is the version
used in the project’s official artifact.

D. Experimental Results

We organize our experimental results around a series
of research questions (RQs). Where necessary for space,
we present the results from a subset of projects here and
defer the rest to a technical report [44].

3We had initially planned to run our experiments with cvc5 [15]
too. However, our preliminary experiments showed the projects are
overfitted to Z3. Without intervention, cvc5 cannot solve any of the
Dafny or F⋆ queries, since it cannot even parse the SMT queries these
program verification tools produce, due to their use of various bits of
Z3-specific syntax and features. After we converted the queries to a
format cvc5 understands, it could only solve ∼14% of the queries in
KomodoD. We consulted with the cvc5 developers for option tuning
and tried cvc5’s automated configuration script for SMT-COMP, but it
did not significantly improve the number of queries solved.

182



RQ1: Do Solver Upgrades Improve Stability?

For each query-solver pair (Q,S), we run Mariposa,
which outputs a stability category. In Figure 3, each
stacked bar shows the proportions of categories in a
project-solver pair. In all project-solver pairs, the major-
ity of queries are stable. However, a non-trivial amount
of instability persists as well.

We observe different trends in each project as newer
solver versions are used. The unstable proportion of
vWasmF and KomodoS remain consistently small across
the tested solver versions. On the other hand, we observe
signs of projects that “overfit” to their artifact solver, in
that they become less stable with solver upgrades.

Specifically, all of the Dafny-based projects in our
study show more instability in newer Z3 versions, with
a noticeable gap between Z3 4.8.5 and Z3 4.8.8. The
difference in the stability performance is perhaps ex-
pected, as these projects were all developed using (now)
outdated Z3 solver versions. As of the time of writing,
F⋆ continues to use Z3 4.8.5, which is approximately
four years old, while Dafny only transitioned away from
that version earlier this year.

Commit Bisection. We perform further experiments
to narrow down the Z3 git commits that may have caused
the increase in instability. In the six experiment projects,
285 queries are stable under Z3 4.8.5 but unstable
under Z3 4.8.8. For each query in this set, we run git
bisect (which calls Mariposa) to find the commit to
blame, i.e., where the query first becomes unstable.

Table II shows the the bisection results for the 285
queries. Note git bisect might not be able to find a
unique commit to blame. For example, when the binary
search narrows the problem down to a region where
commits do not compile, all commits in that region are
potentially to blame. We indicate such cases as N/A in
the table.

There are a total of 1,453 commits between the two
versions, among which we identify two commits that
have the most impact. Out of the 285 queries, 115 (40%)
are blamed on commit 5177cc4. Another 77 (27%)
of the queries are blamed on 1e770af. The remaining
queries are dispersed across the other commits.

These two most significant commits are small and
localized: 5177cc4 has 2 changed files with 8 additions
and 2 deletions; 1e770af has only 1 changed file with
18 additions and 3 deletions. Both commits are related to
the order of flattened disjunctions. 1e770af, the earlier
of the two, sorts the disjunctions, while 5177cc4 adds
a new term ordering for ASTs, which it uses to replace
the previous sorting order of disjunctions.4

4We contacted the Z3 developers after our paper submission. Coin-
cidentally, they were investigating regressions in F⋆ query success, and
they identified the same two commits as having the most significant
impact. Their fix is now merged into the Z3 master branch.

hash blames commit message

5177cc4 115 change lt
1e770af 77 local sort
db87f2a 16 separate rewriter...
ff6b330 12 remove incorrect ...
7f073a0 7 fix #2452 fix #...
8b23a17 3 move flatten func...
c70e9af 3 fix #3734
dd452e0 3 eq
762f265 3 merge with master
001ddef 3 fix #2749
3774d6d 2 fix #2890
3ef05ce 2 tuning
80994f7 1 redirect to the n...
d23230e 1 fix declaration s...
e5dffea 1 fix #2365
ad55a1f 1 Update release.ym...
06ee09a 1 Update README.md
38ad66c 1 update hash #257...
9cccfb9 1 Take one on addin...
ba40a57 1 better branching ...
1e92165 1 branch selection ...
bba2cf9 1 fix #3163
2a1f8ac 1 revert normalizin...

N/A 28
total 285

TABLE II
COMMIT BISECTION RESULTS

RQ2: Do Projects Differ in Stability?
KomodoD and KomodoS are two implementations of

the Komodo security hypervisor in Dafny and Serval
respectively. The unstable proportion of both projects
is small using their artifact solvers. However, KomodoD
shows a significant increase in instability using newer
versions of Z3, while KomodoS remains stable. Note
that KomodoS implements a subset of the features in
KomodoD. If we exclude the attestation-related queries
from KomodoD, which are not present in KomodoS, the
unstable proportion of KomodoD is reduced to 4.27%
(from 5.01%) using the latest Z3. The proportion is still
much higher than KomodoS’s (0.52%). The gap may be
attributable to other differences in features and proof
goals, but it may also indicate that restricting queries to
a decidable logic (as KomodoS does) improves stability.

VeriBetrKVL and VeriBetrKVD are two implementa-
tions of VeriBetrKV in Dafny with different approaches
to heap reasoning, where the authors of VeriBetrKVL
report better query times by adopting linear types. How-
ever, their result does not appear to generalize to stability
performance: VeriBetrKVL is only slightly more stable
than VeriBetrKVD when using their artifact solvers, and
both suffer similar stability regressions on later solvers.

We notice that vWasmF is remarkably stable: the
unstable proportion of vWasmF is almost negligible
across all solver versions. We contacted the authors of
vWasmF , and they confirmed that they put significant

183



Z3 4.4.2

2015/10
Z3 4.5.0

2016/11
Z3 4.6.0

2017/12
Z3 4.8.5

2019/06
Z3 4.8.8

2020/05
Z3 4.8.11

2021/07
Z3 4.11.2

2022/09
Z3 4.12.1

2023/01

solver versions and release dates

0

1

2

3

4

5

6

7

8

9

q
u

er
y

p
ro

p
or

ti
on

(%
)

unsolvable

unstable

inconclusive

KomodoD
KomodoS
VeriBetrKVD

VeriBetrKVL

DICE?
F

vWasmF

artifact solver

Fig. 3. Overall Stability Status. From bottom to top, each stacked bar shows the proportions of unsolvable (lightly shaded), unstable
(deeply shaded), and inconclusive (uncolored) queries. The remaining portion of the queries (stacking each bar to 100%), not shown, are
stable. The solver version used for each project’s artifact is marked with a star (⋆).

manual engineering effort into making the queries sta-
ble [45]. They attribute the stability of their queries to
a disciplined usage of multiple empirically developed
techniques. Globally, they disable the non-linear arith-
metic solver (anecdotally prone to instability), reduce
F⋆’s fuel/ifuel settings (which control unrolling
of recursive functions and inductive data types), and
minimize the use of ambient lemmas (that tend to bloat
solver context). They also minimize the use of (user-
introduced, F⋆-level) quantifiers, and manually pick good
quantifier triggers. Particularly complex proofs neces-
sitated even more drastic measures: using F⋆’s tactic
framework to perform manually-controlled normaliza-
tion of terms before verification condition generation.
They note that neither the original un-normalized nor the
fully-normalized forms were amenable to stable proofs;
only the manually controlled normalization worked.

While few projects can afford this level of manual
effort, these results suggest that developers and pro-
gram verification frameworks can potentially shape their
queries to minimize instability.

RQ3: Do Longer Time Limits Mitigate Instability?

As we discussed in Section III-D, the choice of time
limit Tlimit could impact our experimental results. Indeed,
one might expect that unstable queries will eventually
turn into stable ones given large enough time limits.
To test this hypothesis, we extended the experiments
using the most recent Z3 (version 4.12.1) with a time
limit of 150s (2.5 × 60s).

In Figure 4 we report the proportion of unsolvable
and unstable queries for each Tlimit in KomodoD
and VeriBetrKVD. We observe that the unsolvable
proportion drops as Tlimit increases. This is expected, as
a query might only become solvable with a longer time.

However, the unstable proportion stays remark-
ably consistent after initial fluctuations. That is, certain
unstable queries remain unstable, even with a

10 30 60 90 120 150
0

2

4

6

8
KomodoD Z3 4.12.1

10 30 60 90 120 150
0

2

4

6

8
VeriBetrKVD Z3 4.12.1

unsolvable

unstable(+0s)

unstable(+10s)

unstable(+30s)

unstable(+60s)p
ro

p
or

ti
on

of
q
u

er
ie

s
(%

)

time limit (seconds)

Fig. 4. Comparing Time Limit Choices. The proportion of
unstable queries stays around the same level after some fluctuations.

longer time limit. To analyze this further, we report
the intersection of unstable queries at Tlimit and
Tlimit+step, for steps of 10, 30 and 60 seconds. One can
interpret a Tlimit + step curve as follows: if some queries
are unstable at Tlimit, it reports how many of them
will remain unstable at Tlimit + step.

We observe that for a step of 10s, the difference is
small. This means that most unstable queries remain
unstable if given 10 more seconds, which is expected.
For a step size of 60s, the difference is larger but still
not significant. In VeriBetrKVD, it has almost no impact
beyond 30s. Therefore, while a longer time limit could
help mitigate instability, it is not a silver bullet.

RQ4: Do Results from Mutation Methods Overlap?

We covered multiple mutation methods in our study.
A natural question is whether these methods are equally
effective in detecting instability.

184



10 20 30 40 50 60
0

1

2

3

4

5

KomodoD Z3 4.12.1

unstable(all methods)

shuffling

renaming

reseeding

intersect

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

2.5

3.0

VeriBetrKVD Z3 4.12.1

unstable(all methods)

shuffling

renaming

reseeding

intersectp
ro

p
or

ti
on

of
q
u

er
ie

s
(%

)

time limit (seconds)

Fig. 5. Comparing Mutation Methods. Mutation methods differ in
their ability to detect instability. Z3 4.12.1 has the most instability
found through shuffling. The intersection of methods is also shown as
a reference. Note that each sub-graph uses a different y-axis scale.

In Figure 5, we show the unstable proportions identi-
fied using each mutation method, along with the overall
unstable proportion. Recall that the latter is a superset
of the individual mutations, as discussed in Section III-E.
Since the choice of Tlimit may impact the categorization,
we present results for different Tlimit as well.

Our results indicate that the effectiveness of mu-
tation methods differ. For example, in KomodoD and
VeriBetrKVD, the unstable proportion is the highest
for shuffling, followed by renaming, then reseeding,
regardless of Tlimit. In fact, of the unstable queries
in KomodoD at 60s, 36.9% are uniquely identified by
shuffling, 6.8% by renaming, and 3.9% by reseeding.

RQ5: How Stable are Stable Queries?

The Standard Deviation of Mutant Response Times
is a metric we introduced in Section III-F, where a
large value indicates less actual stability, even if mutants
consistently succeed. Figure 6 shows the distribution
of standard deviation from stable queries, which are
mostly less than 1s, but there are exceptions exceeding
10s, which is significant given the 60s limit.

RQ6: Is the Original Query Special?

In our methodology, the original query is treated as a
member of the mutant set. It might be reasonable to ask
how does the original query differ from its mutants in
terms of performance.

In Figure 7, we show the verification time of the
original query and the median of its mutants, using
the data from our extended time limit experiment. In
KomodoD, which has the highest unstable proportion
among the six projects, the run time of the original and
its mutants are generally within ±50% of each other. In
vWasmF , where the unstable proportion is the lowest,
the two have nearly identical performance.

1 5 10 15 20
0

2

4

6

8

10

KomodoD Z3 4.12.1

shuffling

renaming

reseeding

1 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

DICE?
F Z3 4.12.1

shuffling

renaming

reseeding

p
ro

p
or

ti
on

of
q
u

er
ie

s
ex

ce
d

in
g

(%
)

time standard deviation (seconds)

Fig. 6. Degree of Stability in Stable Queries. The proportions are
taken over stable queries only, some of which still exhibit large
standard deviations in time among mutants. Mutation methods also
differ in their impact. Each sub-graph uses a different y-axis scale.

10−1 100 101 102
10−1

100

101

102

KomodoD Z3 4.12.1

unsolvable

unstable

stable

inconclusive
x

1.5 < y < 1.5x

10−1 100 101 102
10−1

100

101

102

vWasmF Z3 4.12.1

unsolvable

unstable

stable

inconclusive
x

1.5 < y < 1.5x

original time (seconds)

m
ed

ia
n

m
u

ta
n
t

ti
m

e
(s

ec
on

d
s)

Fig. 7. Comparing Original and Mutant Queries. The original query
has a run time similar to the median of the mutants. In KomodoD, a few
cases have the original query time out while some mutants succeed.

V. THE MARIPOSA BENCHMARK

Our experiments over a total of 17,043 original queries
generate more than 3 million mutants and take more than
578 CPU days to evaluate. To facilitate future research,
we distill the experiment queries into the Mariposa
benchmark set. We hope this first version of Mariposa
will incentivize improvement and prevent regressions in
SMT solver stability for program verification workloads.

The Mariposa benchmark includes both unstable and
stable queries for the projects we experimented with, as
shown in Table III. Each is further divided into a core
and an extension, where the core contains fewer but more
representative queries.

The unstable core set contains the queries from each
project that are categorized as unstable in both the
artifact solver and the latest solver. These queries have
been consistently unstable, which might be indicative of
a long-term problem. The extension set contains all the
additional unstable queries in the latest Z3 version.

185



Project Original Unstable Stable
core ext. core ext.

KomodoD 2,054 8 95 30 97
KomodoS 773 2 2 30 9
VeriBetrKVL 5,600 22 153 30 102
VeriBetrKVD 5,325 25 130 30 81
DICE⋆

F 1,536 3 9 30 13
vWasmF 1,755 0 4 30 0

Total 17,043 60 393 180 302

TABLE III
THE MARIPOSA BENCHMARK

The stable core set contains 30 randomly selected
stable queries from each project, with mutant time
standard deviation less than one second. This set is meant
to prevent stability regression, since each member has a
consistent result and run time. The extension set contains
all the stable queries that have a standard deviation
of more than six seconds. Given that the time limit is
60 seconds, such large standard deviations may indicate
potential instability, as discussed in Section III-F.

VI. LIMITATIONS

Our experiments draw from six verification projects,
which we cannot claim are fully representative of all the
SMT-based program verification projects. Nevertheless,
we believe our experiments offer valuable insights and
serve as a starting point for future work.

Our experiments are performed only with Z3. As ex-
plained earlier, popular automated verification languages
such as Dafny and F⋆ emit queries that are overfitted to
Z3. Hence, our results may not extend to other solvers,
such as cvc5.

Our mutation methods are not exhaustive. This study
explores a few common mutations, but there are many
other mutation methods that might be of interest. For
example, mixing mutations may expose more instability,
e.g., performing shuffling and renaming at the same
time. We leave the exploration of additional mutation
methods to future work.

Our results are dependent on our choice of configura-
tion parameters, e.g., the time limit, the alpha level, etc.
In our experiments and analysis, we have tried to analyze
the impact of these choices (e.g., via our additional
experiments with extended time limits). However we
cannot guarantee that our results are not sensitive to our
particular choice of configurations.

Our results likely under represent actual instability
in the development process. We note that the projects
we studied are the cleaned up final versions of the
code. During development, although developers do not
typically test for instability, they usually try to fix the
most obnoxiously unstable proofs.

VII. CONCLUSION

In this work we have studied the phenomenon of SMT
instability, specifically in program verification projects,
where changes are expected, responsiveness is preferred,
and stability is critical. We have proposed a new method-
ology for detecting and measuring instability, which can
inform program verification tools of instability in gener-
ated queries. We have also constructed a new benchmark
suite, which can be used by SMT solvers to evaluate and
optimize for stability. We have applied our methodology
to evaluate a number of existing verification projects on
various solver versions. Our results show that:
1) Stability is the common case, but instability exists

non-trivially: 2.6% of the queries in our experiment
are unstable with the most recent Z3. In specific
projects, this ratio can be as high as 5.0%.

2) Stability may deteriorate with solver upgrades: three
out of six projects in our experiment show notably
worse stability on newer solver versions.

3) Mutation methods differ in their effectiveness in
detecting instability. Specifically, currently employed
detection methods based on random seeds only cap-
ture a fraction of the problem.

4) Mutants of a given query can exhibit large run-time
variance, even if consistent in verification results.

5) Source-level program changes may reduce instability,
but this currently requires extensive manual engineer-
ing. For example, limiting the use of quantifiers, non-
linear arithmetic, or undecidable theories may help.

6) Increasing the time limit for queries can improve
stability, but it offers diminishing returns.

ACKNOWLEDGMENTS

Chris Hawblitzel and Doug Woos contributed to an
initial exploration of SMT instability in 2016. Mariposa
is a complete rewrite and a fresh set of experiments.
We thank Andrew Reynolds for his help with cvc5
configuration; Jinjin Tian for her advice on our statistical
analysis; Guido Martinez and Nikolaj Bjørner for sharing
their work on patching Z3; and Joshua Gancher, Nikhil
Swamy, and the anonymous reviewers for their helpful
feedback on the paper.

This work was supported in part by the National Sci-
ence Foundation (NSF) under grants 1901136, 2015445,
and 2224279, grants from the Intel Corporation and
Rolls-Royce, Amazon Research Awards (Fall 2022
CFP), the Prabhu and Poonam Goel Graduate Fel-
lowship, and the Future Enterprise Security initiative
at Carnegie Mellon CyLab (FutureEnterprise@CyLab).
Any opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the authors
and do not reflect the views of these supporters.

186



REFERENCES

[1] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill,
“IronFleet: Proving Practical Distributed Systems
Correct,” in Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 2015.

[2] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Tor-
lak, and X. Wang, “Scaling Symbolic Evaluation
for Automated Verification of Systems Code with
Serval,” in Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[3] T. Hance, A. Lattuada, C. Hawblitzel, J. Howell,
R. Johnson, and B. Parno, “Storage Systems are
Distributed Systems (So Verify Them That Way!),”
in Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI),
2020.

[4] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel,
M. Polubelova, K. Bhargavan, B. Beurdouche,
J. Choi, A. Delignat-Lavaud, C. Fournet, N. Ku-
latova, T. Ramananandro, A. Rastogi, N. Swamy,
C. Wintersteiger, and S. Zanella-Beguelin, “Ev-
erCrypt: A Fast, Verified, Cross-Platform Cryp-
tographic Provider,” in Proceedings of the IEEE
Symposium on Security and Privacy, May 2020.

[5] Y.-F. Fu, J. Liu, X. Shi, M.-H. Tsai, B.-Y.
Wang, and B.-Y. Yang, “Signed Cryptographic
Program Verification with Typed CryptoLine,” in
Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS),
2019. [Online]. Available: https://doi.org/10.1145/
3319535.3354199

[6] N. Swamy, T. Ramananandro, A. Rastogi, I. Spiri-
donova, H. Ni, D. Malloy, J. Vazquez, M. Tang,
O. Cardona, and A. Gupta, “Hardening Attack
Surfaces with Formally Proven Binary Format
Parsers,” in Proceedings of the ACM Conference
on Programming Language Design and Imple-
mentation (PLDI), June 2022. [Online]. Available:
https://www.fstar-lang.org/papers/EverParse3D.pdf

[7] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif,
J. Lee, R. Soulé, H. Wang, C. Caşcaval, N. McK-
eown, and N. Foster, “P4v: Practical Verification
for Programmable Data Planes,” in Proceedings
of ACM SIGCOMM. New York, NY, USA:
Association for Computing Machinery, 2018, pp.
490–503.

[8] A. Permenev, D. Dimitrov, P. Tsankov,
D. Drachsler-Cohen, and M. Vechev, “Verx:
Safety Verification of Smart Contracts,” in
Proceedings of the IEEE Symposium on Security
and Privacy, 2020.

[9] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully,

B. Kragl, S. Markle, K. Sauri, D. Schleit, G. Slat-
ton, S. Tasiran et al., “Using Lightweight Formal
Methods to Validate a Key-Value Storage Node in
Amazon S3,” in Proc. of the ACM Symposium on
Operating Systems Principles (SOSP), 2021.

[10] A. Chudnov, N. Collins, B. Cook, J. Dodds,
B. Huffman, C. MacCárthaigh, S. Magill,
E. Mertens, E. Mullen, S. Tasiran et al.,
“Continuous Formal Verification of Amazon
s2n,” in Proceedings of the Conference on
Computer Aided Verification (CAV), 2018.

[11] M. Dodds, “Formally Verifying Industry Cryp-
tography,” IEEE Security and Privacy Magazine,
vol. 20, no. 3, 2022.

[12] C. Barrett and C. Tinelli, Satisfiability Modulo
Theories. Springer, 2018.

[13] C. Barrett, A. Stump, C. Tinelli et al., “The SMT-
lib Standard: Version 2.0,” in Proceedings of the
Workshop on Satisfiability Modulo Theories, 2010.

[14] L. De Moura and N. Bjørner, “Z3: An Efficient
SMT Solver,” in Tools & Algorithms for the Con-
struction and Analysis of Systems (TACAS), 2008.

[15] H. Barbosa, C. Barrett, M. Brain, G. Kremer,
H. Lachnitt, M. Mann, A. Mohamed, M. Mohamed,
A. Niemetz, A. Nötzli et al., “cvc5: A Versatile
and Industrial-Strength SMT Solver,” in Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), 2022.

[16] C. A. R. Hoare, “An Axiomatic Basis for Com-
puter Programming,” Communications of the ACM,
vol. 12, no. 10, 1969.

[17] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill, “Ironclad Apps:
End-to-End Security via Automated Full-System
Verification,” in Proceedings of the USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI), October 2014.

[18] K. R. M. Leino and C. Pit-Claudel, “Trigger Se-
lection Strategies to Stabilize Program Verifiers,”
in Proceedings of the International Conference on
Computer Aided Verification (CAV), S. Chaudhuri
and A. Farzan, Eds., 2016.

[19] K. R. M. Leino, “Dafny: An automatic program
verifier for functional correctness,” in Logic for
Programming, Artificial Intelligence, and Reason-
ing, E. M. Clarke and A. Voronkov, Eds., 2010.

[20] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi,
A. Delignat-Lavaud, S. Forest, K. Bhargavan,
C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin, “Depen-
dent Types and Multi-Monadic Effects in F*,” in
Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL), 2016.

[21] “Debugging Unstable Verification,”

187

https://doi.org/10.1145/3319535.3354199
https://doi.org/10.1145/3319535.3354199
https://www.fstar-lang.org/papers/EverParse3D.pdf


http://dafny.org/dafny/DafnyRef/DafnyRef.html#
1365-debugging-unstable-verification.

[22] “Repeating Proofs with Quake,” http:
//www.fstar-lang.org/tutorial/book/under_the_
hood/uth_smt.html#repeating-proofs-with-quake.

[23] C. Barrett, L. de Moura, and A. Stump, “SMT-
COMP: Satisfiability modulo theories competition,”
in Computer Aided Verification, 2005.

[24] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and
B. Parno, “Komodo: Using Verification to Disen-
tangle Secure-Enclave Hardware from Software,” in
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[25] N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, “SAT Competition 2020,” Artificial
Intelligence, vol. 301, 2021.

[26] T. Weber, “Scrambling and Descrambling SMT-
LIB Benchmarks,” in SMT @ IJCAR, 2016.

[27] A. Biere and M. Heule, “The Effect of Scram-
bling CNFs,” in Proceedings of Pragmatics of SAT,
vol. 59, 2019.

[28] D. Blotsky, F. Mora, M. Berzish, Y. Zheng, I. Kabir,
and V. Ganesh, “StringFuzz: A Fuzzer for String
Solvers,” in Proceedings of the Conference on
Computer Aided Verification (CAV), 2018.

[29] D. Winterer, C. Zhang, and Z. Su, “On the Unusual
Effectiveness of Type-Aware Operator Mutations
for Testing SMT Solvers,” vol. 4, no. OOPSLA.
Association for Computing Machinery, Nov. 2020.

[30] J. Park, D. Winterer, C. Zhang, and Z. Su,
“Generative Type-Aware Mutation for Testing
SMT Solvers,” Proc. ACM Program. Lang., vol. 5,
no. OOPSLA, oct 2021. [Online]. Available:
https://doi.org/10.1145/3485529

[31] P. Yao, H. Huang, W. Tang, Q. Shi, R. Wu, and
C. Zhang, “Skeletal Approximation Enumeration
for SMT Solver Testing,” in Proceedings of the
ACM Symposium on the Foundations of Software
Engineering (FSE), 2021.

[32] A. Niemetz, M. Preiner, and C. Barrett, “Murxla:
A Modular and Highly Extensible API Fuzzer for
SMT Solvers,” in Computer Aided Verification,
2022.

[33] A. Bugariu and P. Müller, “Automatically Testing
String Solvers,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engi-
neering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p.
1459–1470.

[34] M. Bringolf, D. Winterer, and Z. Su, “Finding
and Understanding Incompleteness Bugs in SMT
Solvers,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software
Engineering, ser. ASE ’22. New York, NY,

USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/
3551349.3560435

[35] W. Feller, An Introduction to Probability Theory
and its Applications, Volume 2. John Wiley &
Sons, 1991, vol. 81.

[36] G. S. Brodal and R. Fagerberg, “Lower Bounds for
External Memory Dictionaries,” in Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003.

[37] I. T. Kassios, “Dynamic Frames: Support for Fram-
ing, Dependencies and Sharing Without Restric-
tions,” in Proceedings on the International Sym-
posium on Formal Methods (FM), 2006.

[38] J. Li, A. Lattuada, Y. Zhou, J. Cameron, J. Howell,
B. Parno, and C. Hawblitzel, “Linear Types for
Large-Scale Systems Verification,” in Proceedings
of the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications
(OOPSLA), December 2022.

[39] A. Marochko, D. Mattoon, P. England,
R. Aigner, R. Spiger (CELA), and
S. Thom, “Cyber-Resilient Platforms Overview,”
Microsoft Research, Tech. Rep. MSR-TR-
2017-40, September 2017. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/
publication/cyber-resilient-platforms-overview/

[40] Z. Tao, A. Rastogi, N. Gupta, K. Vaswani, and A. V.
Thakur, “DICE*: A Formally Verified Implemen-
tation of DICE Measured Boot,” in Proceedings of
the USENIX Security Symposium, Aug. 2021.

[41] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer,
M. Holman, D. Gohman, L. Wagner, A. Zakai, and
J. Bastien, “Bringing the Web up to Speed with
WebAssembly,” in Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2017.

[42] J. Bosamiya, W. S. Lim, and B. Parno, “Provably-
Safe Multilingual Software Sandboxing using We-
bAssembly,” in Proceedings of the USENIX Secu-
rity Symposium, August 2022.

[43] C. Barrett, C. L. Conway, M. Deters, L. Hadarean,
D. Jovanović, T. King, A. Reynolds, and C. Tinelli,
“CVC4,” in Proceedings of the International Con-
ference on Computer Aided Verification (CAV),
2011.

[44] Y. Zhou, J. Bosamiya, Y. Takashima, J. Li,
M. Heule, and B. Parno, “Mariposa: Measuring
SMT Instability in Automated Program Verification
(Technical Report),” Carnegie Mellon University,
Tech. Rep., August 2023. [Online]. Available:
https://doi.org/10.1184/R1/23905905

[45] J. Bosamiya, W. S. Lim, and B. Parno, private
communication, 2023.

188

http://dafny.org/dafny/DafnyRef/DafnyRef.html#1365-debugging-unstable-verification
http://dafny.org/dafny/DafnyRef/DafnyRef.html#1365-debugging-unstable-verification
http://www.fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#repeating-proofs-with-quake
http://www.fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#repeating-proofs-with-quake
http://www.fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#repeating-proofs-with-quake
https://doi.org/10.1145/3485529
https://doi.org/10.1145/3551349.3560435
https://doi.org/10.1145/3551349.3560435
https://www.microsoft.com/en-us/research/publication/cyber-resilient-platforms-overview/
https://www.microsoft.com/en-us/research/publication/cyber-resilient-platforms-overview/
https://doi.org/10.1184/R1/23905905

	I Introduction
	II Related Work
	III Methodology
	III-A Characterizing Program Verification Queries
	III-B Mutation Methods
	III-C Detecting Stability
	III-D Accounting for Time Limits
	III-E Results from Different Mutation Methods
	III-F Quantifying (In)stability

	IV Experiments
	IV-A The Mariposa Tool
	IV-B Projects Under Study
	IV-C Experiment Configurations
	IV-D Experimental Results

	V The Mariposa Benchmark
	VI Limitations
	VII Conclusion

