
Interprocedural Constant Loop Bound
Propagation for Patmos Architecture

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Jérôme Hue,
Matrikelnummer 12123713

an der Fakultät für Informatik

der Technischen Universität Wien
Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner
Mitwirkung: Emad Jacob Maroun

Wien, 7. Februar 2024
Jérôme Hue Peter Puschner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Interprocedural Constant Loop Bound
Propagation for Patmos Architecture

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Jérôme Hue,
Registration Number 12123713

to the Faculty of Informatics

at the TU Wien
Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner
Assistance: Emad Jacob Maroun

Vienna, February 7, 2024
Jérôme Hue Peter Puschner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jérôme Hue,

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschlieÿlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Februar 2024
Jérôme Hue

v

Danksagung

Ich möchte meinem Mitbetreuer, Herrn Emad Jacob Maroun, und meinem Betreuer,
Herrn Peter Puschner, für die Zeit, die sie sich für mich genommen haben, und die
wertvollen Ratschläge, die sie mir gegeben haben, danken. Auch meinen Eltern danke ich
herzlich für ihre Unterstützung, insbesondere für das Korrekturlesen meines Berichts.

vii

Acknowledgements

I would like to thank my supervisor, Mr. Emad Jacob Maroun, as well as my supervisor
Mr. Peter Puschner for their time, guidance, and valuable advice. My sincere appreciation
also goes to my parents for their support, especially in proofreading my report.

ix

Kurzfassung

Echtzeitsysteme erfordern nicht nur genaue Berechnungen, sondern auch die strikte Ein-
haltung zeitlicher Beschränkungen. Der Patmos-Prozessor, der für Echtzeitanwendungen
entwickelt wurde, unterstützt eine Technik zur Codegenerierung, die als Single-Path-Code
bekannt ist. Diese Technik stellt sicher, dass alle Programmausführungen konsistent
einem einzigen Pfad folgen, unabhängig von Laufzeitereignissen. Ein entscheidender
Aspekt beim Erreichen dieser Vorhersagbarkeit ist die Verfügbarkeit von Schleifengrenzen
während der Kompilierung. Die korrekte Generierung von Code hängt davon ab, dass die
genaue Anzahl der Iterationen von Schleifen bekannt ist, die zur Kompilierungszeit Zeit
bereitgestellt wird.

Um dies zu erleichtern, bietet der Patmos-Compiler Unterstützung für ein Pragma, das
es Entwicklern ermöglicht, die unteren und oberen Grenzen von Schleifen direkt im
C-Code anzugeben. Diese Informationen werden dann verwendet, um Single-Path-Code
zu erzeugen, der garantiert, dass Schleifeniterationen genau wie definiert ablaufen. Eine
Herausforderung ergibt sich jedoch, wenn die Schleifengrenzen von Funktionsargumenten
abhängen. In solchen fällen werden Schleifenbegrenzungspragmas unwirksam, da sie nicht
in der Lage sind nicht konstante Werte zu berücksichtigen, was zu Kompilierungsfehlern
führt.

Diese Masterarbeit untersucht die Optimierung von Echtzeitsystemen mit dem Patmos-
Prozessor und konzentriert sich auf die Herausforderung, dass Schleifengrenzen von
Funktionsargumenten abhängen. Die Forschung untersucht alternative Strategien zur
Umgehung dieser Einschränkung und zielt darauf ab, die Anwendbarkeit der Single-Path-
Code-Generierung in Szenarien zu verbessern, in denen Schleifengrenzen dynamisch von
Laufzeitparametern abhängen. Die Ergebnisse tragen dazu bei, die Möglichkeiten der
Entwicklung von Echtzeitsystemen auf der Patmos-Plattform zu verbessern, indem sie es
ermöglichen, Code zu schreiben, der vorher nicht verarbeitet werden konnte.

xi

Abstract

Real-time systems demand not only accurate computation but also strict adherence
to temporal constraints. The Patmos processor, designed for real-time applications,
supports a code generation technique known as single-path code. This technique ensures
that all program executions consistently follow a singular path, independent of runtime
events. A crucial aspect of achieving this predictability is the availability of loop bounds
during compilation. The correct generation of code relies on knowing the exact number
of iterations loops will perform, provided at compile time.

To facilitate this, the Patmos compiler provides support for a pragma allowing developers
to specify the lower and upper bounds of loops directly in C code. This information is
then utilized to generate single-path code, guaranteeing loop iterations occur precisely
as defined. However, a challenge arises when loop bounds are contingent upon function
arguments. In such cases, loop bound pragmas are rendered ineffective due to their
inability to accommodate non-constant values, resulting in compilation failures.

This master’s thesis explores the optimization of real-time systems using the Patmos
processor, with a specific focus on addressing the challenge of loop bounds depending on
function arguments. The research investigates alternative strategies to circumvent this
limitation, aiming to enhance the applicability of single-path code generation in scenarios
where loop bounds dynamically depend on runtime parameters. The findings contribute
to advancing the capabilities of real-time systems development on the Patmos platform,
making it possible to write code that couldn’t be handled before.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the work . 2
1.3 Contributions . 2
1.4 Outline . 2

2 Background 5
2.1 Patmos and Predicated Instructions 5
2.2 Basic Definitions . 6
2.3 The Single-Path Transformation . 7
2.4 The Single-Path Code Generator . 9
2.5 Related Work . 12

3 Program Analysis 13
3.1 Data-flow Analysis background . 13
3.2 Constant Propagation . 16

4 Design 19
4.1 User perspective . 19
4.2 Overall design . 20

5 Implementation in LLVM 25
5.1 Variable Loop Bounds . 25
5.2 Main Pass . 27
5.3 Making use of our variable . 28
5.4 Handling of LLVM intrinsics . 29

6 Tests and Results 31

xv

6.1 Unit tests . 31
6.2 Benchmarks . 32
6.3 Artificial programs . 32

7 Conclusion and Further Work 35

A Tests 37

List of Figures 41

List of Listings 43

List of Algorithms 45

Bibliography 47

CHAPTER 1
Introduction

1.1 Motivation
In today’s interconnected world, real-time systems are ubiquitous, playing critical roles
in various domains, including healthcare, aerospace, telecommunications, and industrial
automation. Real-time systems, in contrast to conventional systems, face an additional
challenge: the imperative to meet stringent temporal constraints[1]. In essence, these
systems must not only deliver accurate results, but must do so within a specified time
frame.

To ensure the adherence to these temporal constraints, techniques have been developed
to analyze the Worst-Case Execution Time (WCET) of a program. WCET analysis is
essential in real-time systems, as it provides an upper bound on the time it takes for a
program to complete its execution under the most adverse conditions. Meeting WCET
guarantees is crucial, as it ensures that the system remains predictable and reliable in
scenarios where timing is a vital requirement. For instance, in safety-critical applications
like avionics systems in planes, accurate timing guarantees are essential for tasks such
as flight control and navigation. Any deviation from the expected execution time could
lead to potentially catastrophic consequences.

Despite the importance of WCET analysis, its practical implementation remains a
challenge [2][3], primarily due to the ever-increasing complexity of modern hardware and
software architectures. As technological advancements continue to push the boundaries
of performance and functionality, understanding and estimating the WCET of programs
becomes an intricate task.

As a result, a solution has been proposed: the Single-Path Approach. The Single-Path
Approach consists of ensuring that a program only has a single execution path [4][5],
making WCET analysis simpler by having to consider only one execution path. Our
work fits within this framework and specifically focuses on optimizing loops.

1

1. Introduction

1.2 Aim of the work
In order to produce single-path code, the compiler backend needs to convert different
control structures (if-else statements, function calls, and loops).

With loops, the transformation needs to know the maximum number of iterations the
loop will execute during the program runtime. This fixed value is referred to as constant
loop bound. It needs to be known at compile time, thus provided in the source code
using a pragma. As of today, developers can only define constant loop bounds as fixed
integers.

This project seeks to address this limitation by allowing the loop bound to be dependent
on a variable given as an argument to be propagated across function calls boundaries.
In some cases, this can lead to a performance gain for the loops that do not iterate
their maximum number of times every time. Additionally, it simplifies programming
as developers no longer need to manually calculate this maximum number, easing the
burden of the programmer.

The expected outcome of this project would be a modification to the Patmos compiler
that allows loop bounds dependent on function arguments to be declared using the loop
bound pragma. This would enable the generation of single-path code in such cases, and
therefore make development for real-time systems easier.

1.3 Contributions
The contributions of this master’s thesis project are listed below:

• A general algorithm to propagate constants across function boundaries to be used
as loop bounds,

• The implementation of our algorithm in the LLVM-based Patmos compiler.

1.4 Outline
In the next chapter, we will provide comprehensive background information essential for
the understanding of this project. This includes presentation of predicated instructions, an
explanation of control-structure transformations made by the single-path code generator
and basic definitions of control-flow graph (CFG), a representation of a program execution.
We will also cover the single-path algorithm as an operation on a CFG as well as relevant
details of its implementation. Lastly, we will cover related works of interest. In Chapter 4,
we will detail the proposed approach in a theoretical manner, focusing on its conceptual
difficulties and specificities. In Chapter 5, we will describe the implementation of our
solution in the LLVM-based Patmos Compiler. This includes modifying both its frontend
and backend, as well as a necessary work on some related parts of the compiler to
accommodate for our modified loop handling. Next we discuss how we can validate and

2

1.4. Outline

benchmark our solution, using the existing built-in test framework, a de facto benchmark
suite for WCET related work. We will also target some specific programs that are
improved by our work, and demonstrate the possibilities it offers. Finally, Chapter 7 will
conclude and provide some reflection on further work directions.

3

CHAPTER 2
Background

In this chapter, we offer background information essential for a thorough understanding of
the work conducted. The emphasis is on presenting key technical aspects and contextual
relevant details.

Section 2.1 discusses predicated instructions and the Patmos architecture. Section 2.2
provides a review of basic definitions for formally representing a program. Section 2.3
introduces the concept of single-path transformation. Lastly, Section 2.4 covers the
implementation of Single-Path Code.

2.1 Patmos and Predicated Instructions
The Patmos instruction-set architecture (ISA) – part of the T-CREST project [6] –
was intentionally designed for real-time systems, emphasizing time predictability and
optimizing for low WCET [7]. In Patmos, each instruction is associated with one of eight
predicate registers to enable or disable the instruction[8]. The ISA is fully-predicated,
meaning every instruction type requires a predicate. Instructions also feature a predicate
negation flag, indicating whether the instruction is enabled when the predicate register
is true or false. For instance, the add (p1) r1 = r1, r2 instruction represents an
addition operation predicated on the p1 register, with the option to negate the predicate
using an exclamation mark (!p1). If the predicate evaluates to true, the instruction
is executed as usual. However, if the predicate evaluates to false, the instruction is
transformed into a no-operation (NOP) : its execution does not modify the state of the
program, but still takes some time.

Predicated instructions are shown in the two code snippets below. They present an
update of the variable x. In both versions, what variable x gets updated to depends on
how cond is evaluated. In Listing 2.1, branches are employed for implementing conditional
behavior, while Listing 2.2 opts for predicated instructions to obtain the same result.

5

2. Background

Listing 2.1: Update of x by branching
cond := . . .
i f (! cond) goto Le l s e
Lthen :

x := a + 1
goto Lend

Le l s e :
x := b − 2

Lend :
. . .

Listing 2.2: Update of x by predicated assignments
cond := . . .
(cond) x := a + 1
(! cond) x := b − 2

2.2 Basic Definitions
Modern compilers work by translating source code (that means scanning, parsing,
analysing it) into an intermediate representation (IR) in what is called the frontend. Sub-
sequently, this IR undergoes optimization before being transformed into machine-specific
code in the backend.

In the following subsection, we will describe what a Control-Flow Graph (CFG) is, and
give some crucial basic definitions.

Basic Block : A basic block is a continuous code block with one entry point and one
exit point.

Control-Flow Graph : A Control-Flow Graph is a directed graph where nodes
correspond to basic blocks, and edges indicate transitions between these blocks (i.e.
control flow path) [9]. Example : Figure 2.3 is an example of a CFG.

Furthermore, we can define relationship between nodes of those graphs :

A node bi dominates a node bk if bi is on every path from the entry node of the graph
to bk. Similarly, a node bi post-dominates a node bk if bi is on every path from bk to
all exit nodes [10]. Example : node b in 2.3 dominates every other node in the graph,
except for a. Node g post-dominates node b.

A Loop in a CFG is a strongly connected component of the graph. Moreover, we defined
a Natural Loop as having an entry node called the loop header that dominates every

6

2.3. The Single-Path Transformation

other node in the loop [11]. Example : nodes {c, d, e} are a loop in 2.3. Figure 2.4
illustrates the construction of a loop header graph, where the parent of each node is the
loop header of the innermost loop the node is in.

Forward Control-Flow graph: A Forward Control-Flow Graph (FCFG) is the graph
obtained by removing all loop edges from a CFG, with a loop edge being an edge leading
to a loop header [11]. Such a graph is acyclic [12]. Example: Figure 2.6 is the FCFG
obtained by removing the loop-edges of component {c, d, e} from the CFG graph of figure
2.3.

Control-Dependence is defined as follows : Given two nodes bi and bj of a CFG G, bj

is control-dependent on bi if and only if there exists a path from bi to bj with any node
in this path post-dominated by bj and bi is not post-dominated by bj [11]. Example: in
figure 2.3 node f is control-dependent on b.

Lastly, a new relation, constant-loop dominance has been introduced in [13], where
it is defined in the following manner : ”A node x constant-loop dominates a node y
(x cldom y) if every path from the entry to y visits x a fixed number of non-zero times”.
This relation is used to enable more optimizations. In single-path code, a function that
is always called enabled is denominated as a ”pseudo-root function” (because this is
trivially the case for the root function, a function that is single-path, but is called from a
non single-path function). If a function is called from a constant-loop dominant block
(meaning the loop runs a fixed number of times), we can optimize it similarly to a
root function. This type of function is called a ”pseudo-root” function. Any function
called from a root or pseudo-root in a constant-loop dominant block is also considered a
pseudo-root. Pseudo-root are interesting because they can be optimized by removing
their predicate argument, since they are always enabled. This in turn requires the calling
instruction to a pseudo-root function to be predicated, so that the pseudo-root function
is not called from a disabled path.

2.3 The Single-Path Transformation
Single-Path Transformation needs conversion of control-flow structures, and can be
described as an algorithm transforming the CFG of a program.

2.3.1 Conversions

As described earlier, several techniques are used to transform code into single-path code,
that we list here :

• If-Conversion: In this, the predicate assumes the value of the condition. The state-
ments within the ”if” block are associated with this predicate, and the statements
within the ”else” block are associated with the negation of this predicate.

7

2. Background

• Loop-Conversion: For Single-Path code, it is needed to make every loop iterate the
same number of times. To achieve this goal, a loop counter is introduced, initialized
with the maximum number of iterations for the loop (this information is typically
provided through an annotation in the source code of the program). Subsequently,
the counter is decremented with each iteration, and the loop terminates when
it reaches zero. Notably, not all loops iterate the maximum number of times
they would run in traditional code on every execution, with the body of the loop
predicated with the initial loop exit condition. This results in some instructions
being ’wasted’ when the number of iterations of the loop is less than its maximum
number of iterations.

• Procedure-Conversion: Procedure-Conversion is the trickiest. It might seem intu-
itive to add a predicate before the function call instruction. However, if we do this,
it is possible that we end up with a different number of function calls between two
executions of our program, if a function is called in some paths but not in others.
To mitigate this, functions are modified to accept an additional predicate parameter.
This predicate is then used on the function’s instructions. As a result, functions
are always called in single-path code, but they can be called enabled or disabled.
Finally, we must note that loop counters operations are not predicated, so that
even if a function is called disabled, it contains the same number of instructions as
a function that would be enabled.

As an example, figures 2.1 and 2.2 show the single-path transformation applied to the
CFG of a function. Notice how colors in Figure 2.1 indicate conditions for branching.
Block B is conditionally branching to C and D in traditional code, but in single-path code
it leads to both. However, it is possible that C is predicated by a false predicate. Colors
in Figure 2.1 indicate conditions for branching : for instance, only if the green condition
is true will B lead to C. This transfers to Figure 2.2 : only if the green condition is true
will instructions in C be enabled.

BA

D

C

E F

G

Figure 2.1: Traditional CFG

8

2.4. The Single-Path Code Generator

BA DC E F G

Figure 2.2: Single-Path CFG

2.3.2 Single-Path Code Generation Algorithm
Now that we have given the basic definitions, we can describe the transformation algorithm.
This algorithm is described as operating on a CFG.

The different steps of the transformation algorithm, which is based on the RK-Algorithm
by Park and Schlansker [14], are listed in [11] :

We start by identifying loops in the CFG. Subsequently, for each loop, its FCFG is
constructed and partitioned based on control dependence. Predicates are then assigned
to each class formed during this partitioning, with corresponding predicate definitions
inserted at the source of control-dependence edges. Finally, the blocks are rearranged
into a straight-line sequence in topological order. The single-path graph is composed
from the rearranged blocks.

2.4 The Single-Path Code Generator
The single-path transformation is implemented using the LLVM Compiler framework.
We will introduce LLVM, and describe how transformation is performed with it.

2.4.1 LLVM & Compilation Overview
LLVM (originally for Low Level Virtual Machine, but the name is no longer an initialism)
is an open-source compiler framework written in C++ that started in 2000, developed by
Christ Lattner at the University of Illinois [15]. It has gained a lot of popularity due to
its modular and extensive design, as well as its emphasis on intermediate representation,
providing a modern approach compared to GCC.

We are now going to break down the generic code-generation process of LLVM. More
specifically, we will focus on the backend, that is generating assembly language from
LLVM intermediate representation (IR).

In the LLVM code-generation process, the IR is represented in Static Single Assignment
(SSA) form. This form ensures that each variable is assigned only once, which simplifies
and accelerates various compiler optimizations.

One of the key features of SSA form is the use of PHI nodes. PHI nodes are a special
kind of instruction that select a value based on the control flow of the program. They
are necessary when a variable can be assigned a different value depending on the path of
control flow.

9

2. Background

a

b

c f

d

g

h

e

Figure 2.3: Example CFG

a

fc g

dc e

b h

Figure 2.4: Loop Header tree of the
graph

b

g

c

h

t

a

s

f

Figure 2.5: FCFG of the top-level
pseudo-loop

c

[be]
d

s

[be]

e

t

[ee]

Figure 2.6: FCFG of the loop with
header c

The code generation process of LLVM is constituted of seven steps listed and described
below :

Firstly, the Instruction Selection phase translates the LLVM code into a directed
acyclic graph (DAG) [16] of target instructions, utilizing virtual and physical registers (In
order to allocate registers, compilers first assign values to virtual registers, of which there
is an infinite amount. Later on during the compilation process, these virtual registers are
substituted with physical registers.). Subsequently, the Scheduling and Formation
phase orders the instructions and emits machine code. The optional SSA-based Ma-
chine Code Optimizations stage applies optimizations to the SSA-form produced by

10

2.4. The Single-Path Code Generator

the instruction selector. Following this, the Register Allocation phase transforms the
target code from an infinite virtual register file to the actual register file of the target,
introducing spill code and eliminating virtual register references. The Prologue/Epi-
logue Code Insertion stage inserts code for function prologue and epilogue, addressing
stack space requirements. The Late Machine Code Optimizations phase handles
final machine code optimizations, and finally, the Code Emission stage produces the
target assembler format or machine code for the current function.

2.4.2 Single-Path Code implementation
The single-path transformation is implemented as a set of additional passes in the LLVM
backend, modifying the normal flow of code generation described in 2.4.1. We won’t
describe each pass in detail, but will focus on the overall process and passes that really
matter to us. The description of the implementation given in this subsection is based on
unpublished work by the authors of [13].

This process can be described as revolving around two register allocations. The first
one to allocate the general purpose registers, the second one to allocate the predicate
registers. This code generation can be described in a few phases, that are introduced here,
with relevant details explained in the next paragraph. In a first phase, code is prepared
for Single-Path. Then, LLVM’s standard register allocation is run. Next, we have a
”cleanup” phase to prepare for the second register allocation and the main transformation,
and finally the second register allocation is run.

The goal of the first phase is to prepare the code and make sure it meets the requirements
of later passes. During this phase, each function is cloned two times, one version for
single-path and one version for pseudo_root 1. Later on, in that same phase, when
would have determined which functions are to be single-path functions, and which are
pseudo-root, the calls to such function will be rewritten by calls to one of their clone.

The cleanup phase consists of two steps. First the predicate registers that have been
previously allocated are virtualised. The second one makes sure that disabled functions,
whose loop counter is still being decremented, do not mess with the registers.

After cleanup, the main transformation takes place. Then, the LLVM infrastructure is
used to run a second round of register allocation. Since only predicate registers are using
virtual registers, this is in fact a predicate register allocation. The last thing that is done
by single-path code is instruction scheduling.

1When compiling for single-path, one has to specify the root function of single-path. That means it
is possible to have some functions that are not single path.

11

2. Background

2.5 Related Work
We will cover related work in four different areas : predicated instructions, loop bound
analysis, Constant-Execution Time and the LLVM framework.

The introduction of predicated instructions in the compilation process adds considerable
complexity. This complexity requires updates in algorithms, analyses, and optimizations
to accommodate potentially disabled instructions. Notably, traditional intermediate
representations like LLVM typically do not directly incorporate predicated instructions.
However, some research has explored modifications to static single assignment (SSA), a
foundational concept in intermediate representations like LLVM, to include the modeling
of predication [17].

Our work has to do with loop bounds. Proving a program termination is known to be
undecidable [18], however for some practical cases, it remains possible to study loops and
compute their bounds. An example of a tool doing this is LOOPUS, introduced in 2011
[19] and relying on LLVM, that can be used to compute loop bounds for C programs [20].

Constant execution time has now become the focus of single-path code: in [21], the
authors examine automatic compilations techniques to achieve constant execution time
programs. Apart from their application in real-time systems, another key domain for
this technique is cryptography. In timing attacks, introduced by Paul Kocher in 2001,
adversaries exploit variations in the execution time of cryptographic functions that
operate on secret keys or information to extract confidential data [22]. This work has
led to constant-time implementation of some cryptographic functions as a mitigation
technique [23].

Speaking of LLVM, it continues to be widely used and be the subject of many published
papers each year. Among the most prominent ones, we can distinguish of focus on bugs
and formal verification, with the introduction of a bounded translation validation tool in
2021 [24].

12

CHAPTER 3
Program Analysis

3.1 Data-flow Analysis background
Given that we will employ analysis in our work, we will recall the theoretical foundation
of data-flow analysis in this section.

Data-flow Analysis is a framework for providing properties about programs [25][26]. As
its name might suggest, data-flow analysis can determine properties for each point of a
program represented as a CFG.

In order to perform such an analysis, we first have to define transfer functions and
control-flow constraints. A transfer function fs connects the values available before
(written in[s]) and after (out[s]) the execution of a statement s. In a data-flow analysis,
information can be propagated forward and backward. For a forward analysis, we have
out[s] = fs(in[s]). For a backward analysis, in[s] = fs(out[s]). To save time, we recognize
that the information going in and out of the basic blocks (out[b] and in[b]) are a single
composition of the transfer functions for block statements, which allows us to use fb as
the transfer function for basic blocks.

Once the transfer functions are defined, is it necessary to state control-flow constraints.
For this, the meet operator ∩ combines data-flow values from multiple branches: In a
forward data-flow problem, in for a block b is computed from out of its predecessors:

in[b] =
�

s∈preds(b)
out[s]

In backward data-flow problems, out for b is computed from in of the successors:

out[b] =
�

s∈succs(b)
in[s]

13

3. Program Analysis

The goal of a data-flow problem is to find a solution (that is, the values of in and out for
all basic blocks in the flow graph) that satisfies these constraints. This can be done by
a generic algorithm, given a specification as a data-flow framework �D, ∧, S, F �, where
D ∈ forward, backward is the direction of the analysis, ∧ is the meet operator, S is a
semilattice including a domain of definition V (see definition later) and F : V → V a
family of transfer functions.

A lattice is a partially ordered set of elements (that is a set P and an operator ≤ such
that ≤ is reflexive, antisymmetric, and transitive),

A semilattice can be define as an algebraic structure (V, ∧) composed of a set S and a
operator meet ∧, such for all a, b, c ∈ V , the operator is:

Idempotent : a ∧ a = a

Associative : a ∧ b = b ∧ a

Commutative : a ∧ (b ∧ c) = (a ∧ b) ∧ c

In addition, a semilattice has a top element
, such that for all x ∈ V, x ∧
 =
. A
semilattice can also contain a bottom element ⊥, such that for all x ∈ V, x ∧ ⊥ = ⊥.

Finally, the meet element define an order on the domain. For all x, y ∈ V :

x ≤ y if and only if x ∧ y = x

Once all of this is defined, a data-flow framework can be solved using the following
iterative algorithm shown in Algorithm 3.1. This algorithm starts by initialising every
out[b] to
, then iterates until convergence, applying data-flow equation at each iteration.

Algorithm 3.1: Iterative algorithm for forward data-flow problems [25]
1 foreach basic block B do
2 OUT [B] ←
;
3 end
4 while any out changes do
5 foreach basic block b �= ENTRY do
6 in[B] ← ∅;
7 foreach predecessor p ∈ preds(B) do
8 in[b] ← in[B] ∩ OUT [p];
9 end

10 out[B] ← fB(in[B]);
11 end
12 end

14

3.1. Data-flow Analysis background

3.1.1 Reaching Definitions
To determine, at the beginning of our loop, if the variable specified as our loop bound is
correctly defined, we perform a standard reaching definition analysis. We now specify
the data-flow framework for it.

A definition d of some variable v reaches point p of our program if and only if p reads
the value of v and there exists a path from d to i that does not define v [27].

We will now specify the data-flow analysis tuple :

• The domain of our lattice is the set of definitions. The ⊥ element will be U , the
set of all definitions, and the
 element will be ∅.

• Direction : forward

• Transfer function : gen[b] ∪ (x − kill[B]),
where gen[b] is the set of definitions ‘generated‘ (a new value is assigned to a
variable) by block b and kill[b] is the set of definitions killed (a definition is killed
if at some point a variable is assigned a new value that overrides any previous
definitions) by block b (and x is the argument of our transfer function, also a set of
definitions).

• The meet operator is the set union operator ∪.

This algorithm terminates, because at each iteration, the out[b] values of each basic block
can only decrease, and lattice is of finite height.

More formally, to prove that the iterative algorithm for the data-flow framework termi-
nates, we have to prove that it is monotonic, or to prove a stricter condition, such has
distributivity : f(x ∧ y) ≤ x ∧ y

In the case of reaching definitions, we have [25] :

GEN ∪ (x ∧ y − KILL) = GEN ∪ (x − KILL)
�

GEN ∪ (y − KILL)

(x ∧ y − KILL) = (x − KILL)
�

(y − KILL)

(x ∪ y − KILL) = (x − KILL)
�

(y − KILL)

15

3. Program Analysis

3.2 Constant Propagation
Constant Propagation is a data-flow analysis whose goal is to determine expressions
that evaluate to the same constant every time, and to replace these expressions by this
constant[28]. In the general case, constant propagation is known to be undecidable, but
it can be solved for some specific instances (simple constant, linear constant, conditional
constant, ...).

Constant propagation is a data-flow problem. To solve it, the lattice used is a three
levels lattice (or flat lattice). This lattice has a bottom element, a top element, and every
possible constant value in the middle level.

An algorithm for constant propagation is the Sparse Conditional Constant Propagation
(SCCP), introduced in 1991[29], and used in the LLVM compiler. This algorithm builds
upon three other algorithms.

• Simple Constants [26].

• Sparse Simple Constant, an algorithm using the SSA form of programs [30].

• Conditional Constant, an algorithm that can find all constants that can be found
by evaluating conditional branches having constant operands [31].

Sparse Simple Constant is faster than Simple Constant, but Conditional Constant can
find more constants than both of these algorithms. Sparse Conditional Constant combines
the best of both worlds, finding as many constants as Conditional Constant while being
faster.

We will provide a short description of the SCCP algorithm, based on [27] and [29].

This algorithm starts by assigning a lattice value for each result of operation in the SSA
form of the program. It then proceeds by iterating over two worklists until both of them
are empty : a Flow Worklist, that contains control-flow edges, and SSA Worklist, that
consists of SSA edges (here, SSA is represented as a graph). Additionally, it associates a
flag ExecuteFlag to every flow graph edge.

During the initialization phase, SCCP assigns each lattice value to
 and set each
ExecutableFlag is false. The Flow Worklist is initialized with the edges that are leaving
the procedure entry node, while the SSA Worklist is initialized with the empty set.

Next, the algorithm picks an edge in any of the two worklists, and process it.

If the edge is part of the Flow Worklist, SCCP looks if it marked as executed. If so,
nothing is done. If not, then the edge is marked as executed (the ExecuteFlag is set
to true), and SCCP visits all PHI functions (using the visit − φ procedure described
below) at the start of the destination block pointed by the edge. Next, if only one of
the ExecutableFlags of incoming flow graph edges for dest is true (that means that the

16

3.2. Constant Propagation

destination is visited for the first time), then it evaluates expressions in the destination
node (using a visitExpression procedure detailed below).

If the edge is an SSA edge, and the first destination instruction is a PHI function, then
we use visit − φ on it. If it is an expression, then we look at the ExecuteFlag for each
flow graph node reaching this edge. If any of them is true, then visitExpression is
performed, otherwise nothing happens.

If this item is part of the SSA worklist, and the destination is a PHI function, we use
visit-φ.

visit − φ works as follows : Each operand of the function is evaluated. Then the value
of v is equal to the meet of values of vi. The lattice cell has the same value as the end
destination of the ssa edge.

Evaluating an Expression is done as such : We evaluate the expression based on values
of operators. If the result is the same as the old one, nothing is done Otherwise, if the
expression if part of an assignment, the algorithm adds all outgoing SSA edges to the
SSA Worklist. If the expression controls a conditional branch, then if the new result for
the expression is
, add all outgoing flow edges to the Flow Worklist. If the value is a
constant , only add the flow graph edge executed as the result of the branch to Flow
Worklist.

To obtain an interprocedural analysis, it is needed to discover the initial set of constants,
propagate those constants, and model the transmission of values through procedures.
Finding the initial set of constant can be done with SCCP, propagating them can be
achieved using an iterative algorithm. The transmission of values through procedures is
done by modelling each parameter by a jump function.

17

CHAPTER 4
Design

This chapter will describe the overall design of our solution. Section 4.1 will describe
what our changes to the frontend should look like to the end user. In Section 4.2 will
describe what our transformation pass will look like.

4.1 User perspective
From a user perspective, things are very simple. The user should just be able to specify
which variable is used as an upper loop bound with a pragma, and define a lower bound
as an integer in the same pragma. During the transformation from source code to LLVM
IR, the value of the specified loop bound variable is unknown to the compiler. Therefore,
we can’t provide any sanity check except for the existence of the specified variable in the
program.

To illustrate this, a code snippet from the TACLe[32] benchmark collection is presented
in Listing 4.1. This snippet presents a function containing a loop, and the pragma
giving minimum and maximum loop bounds. Since the loop bounds are to be given as
integers, it is not yet possible to write a single function taking the maximum loop bound
as an argument, as is suggested by the name of the function, cover_swi10(). Indeed,
Listing 4.2 shows the cover_main() function of the program, displaying the use of three
functions differing only in their iteration count. With our changes, it should be feasible
to write the code presented in Listing 4.3: a new pragma varloopbound is used, with
a minimum number of iterations of 0, and a maximum number of iterations of n. The
three different calls of Listing 4.2 can thus be replaced by a single call to the function
cover_swi_n, reducing code duplication and making the program more scalable.

19

4. Design

1 int cover_swi10(int c)
2 {
3 int i;
4

5 #pragma loopbound min 10 max 10
6 for (i = 0; i < 10; i++) {
7 switch (i) {
8 case 0:
9 ...

10 }

Listing 4.1: Code snippet from file cover.c, using integers as loop bounds

1 void _Pragma("entrypoint") cover_main(void)
2 {
3 cover_cnt = cover_swi10(cover_cnt);
4
5 cover_cnt = cover_swi50(cover_cnt);
6
7 cover_cnt = cover_swi120(cover_cnt);
8 }

Listing 4.2: Main function from file cover.c, that is calling three different functions
differing only by the number of iterations

1 int cover_swi_n(int c, int n)
2 {
3 int i;
4
5 #pragma varloopbound min 10 max n
6 for (i = 0; i < n; i++) {
7 switch (i) {
8 case 0:
9 c++;

10 break;
11 case 1:
12 ...
13 }

Listing 4.3: Code snippet from file cover.c, using a variable as loop bound

4.2 Overall design
Once we know what the loop bound variable is, we have to determine if it is constant
through all execution paths, in order for it to be used as the loop bound. For this we
will rely on LLVM’s own optimizations, notably constant propagation, which is already
implemented in the backend[33]. It is essential to note that currently, the compiler cannot

20

4.2. Overall design

be used with an optimization level lower than O21. With this optimization level, LLVM
can already optimize function calls by replacing variables that are constants with their
values without hindering single-path code production. Lastly, being able to determine if
the variable provided by the programmer as a loop bound is constant is not enough, due
to the way function calls are treated in single-path code. Indeed, it is possible that a
function is called disabled (meaning its body is predicated with false predicate). However,
this type of function still requires the loop counter to run (as explained in subsection
2.3.1). This is a problem, because if the call to the function is disabled, the arguments
will not get passed onto the stack, and trying to use them in the loop counter will result
in an error. Thus, we also have to make sure that the function is always called enabled,
and this is explained later.

4.2.1 Intraprocedural Case

The first case happens when the variable used for loop bound is defined inside the function,
more precisely when there is definition of the loop bound in a path from the function
entry to the machine code pseudo instruction storing our variable. In this case, we have
two things to do :

• Determine the definitions of our loop bound that is reaching the loop header.

• Determine is this definition yields a constant loop bound.

In order to satisfy the first point, we start by performing a reaching definition analysis.
The result of this analysis will be, for each statement, the set of definitions that may
reach this statement. For the second, point, we have all the definitions reaching every
point in our program, we can thus trace back the initial definition of our loop bound
variable, and determine if it will be constant or not. In case it is not (for instance, it
could be dependent on the input given to the program, or defined in a branch), we
report an error. Doing so is just a matter of case disjunction on our instructions, thus an
implementation detail.

Listing 4.4 below demonstrates this first case, where the loop bound variable r is defined
inside the function’s body. It is not sure that it is constant with just this snippet, as its
value depends on x.

1This is for instance enforced in the TACLe benchmark suite, where the scripts used to build the test
use the O2 arguments regardless of the configuration

21

4. Design

1 int func1(int x, int a)
2 {
3 int r = x+57;
4 r += 4;
5
6 #pragma varloopbound min 0 max r
7 for(int i = 0 ; i < r; ++i) {
8 a +=2 ;
9 }

10
11 return a;
12 }
13
14 int main() {
15 return func(1,10);
16 }

Listing 4.4: Intraprocedural Case

4.2.2 Interprocedural Case 1

Now let us investigate the case where the loop bound variable is one of the argument of
the function (where it is not redefined in the path from the function entry to the loop, as
we would fall back to the first case). This may seem like an oddly specific case, but in
practice, we have a lot of such functions.

In order to handle this case, we can rely on LLVM built-in constant propagation, that
can propagate constants and replace them by their values, even in complex cases, where
the argument is constant in the caller of the caller.

Assume for now that the function we are in is always called enabled (that means its
body is not predicated). If the argument has already been optimized by LLVM for each
function call, then we can simply use the function argument to initialize the loop counter
of the function. In the event that the argument has not been optimized, that means the
LLVM built-in optimization passes were not able to determine that the argument/loop
bound was constant, thus we stop here and return an error.

An example of such a case is given in the next figure. The loop will iterate 20 times then
10 times, whereas if we had it specified as a normal loop bound pragma, we would have
to give 20 as the maximum loop bound, thus our loop would have iterated 40 times in
total, with 10 times its body disabled in the second run.

22

4.2. Overall design

1 int func(int a, int b)
2 {
3 #pragma varloopbound min 0 max b
4 for(int i = 0 ; i < b; ++i)
5 a +=2 ;
6
7 return a;
8 }
9

10 int main() {
11 int r;
12 // Loopbound is the second argument of func()
13 r += func(1, 20);
14 r += func(5, 10);
15 return r;
16 }

Listing 4.5: Interprocedural Case 1

4.2.3 Interprocedural Case 2
The last case is similar to the second one, except that this time, the function we are
looking at is not always called enabled.

Then we cannot simply use the register holding the function argument that is our loop
bound, because the function argument is not passed on the stack when a function is
disabled. What we do here is try to find the maximum value of our loop bound across all
calls to this function in the program, and use it as a loop bound, making it generate the
same code as if a normal loopbound pragma was used. An example of such case is shown
in Figure 4.6.

1 int main() {
2 int r;
3 if(cond) {
4 r += func(1, 20)
5 } else {
6 r += func(5, 10);
7 }
8 return r;
9 }

Listing 4.6: Interprocedural Case 2

23

CHAPTER 5
Implementation in LLVM

Our solution will be implemented in the Patmos Compiler, based on the LLVM framework.
In a first short section, we will cover the changes needed to specify loop bounds as variables.
In a second section, we will describe the implementation of our solution proposal, presented
in section 4.2. Lastly, we will describe how we can use our work to improve the compiler
with a specific application.

5.1 Variable Loop Bounds
This section is divided into two subsections. Subsection 5.1.1 explores the changes made
to the frontend, while 5.1.2 describes the changes made to the backend.

5.1.1 Frontend changes
To implement our pragma, we rely on existing resources, specifically those created by
developers on LLVM (see [34], [35] and [36]). Obviously, the implementation of the
already existing pragma loopbound to specify loop bounds as integer will also serve as a
reference. The syntax of this existing pragma is as follows :

#pragma loopbound min VALUE max VALUE

Where VALUE is an integer argument.

This new pragma, called varloopbound, has the following syntax:

#pragma varloopbound min VALUE max EXPR

25

5. Implementation in LLVM

Specifying the minimum number of iterations as a variable has also been implemented
for this pragma, but the only use we can make of it is checking that a function iterates a
fixed number of times. For instance, if we specify #pragma varloopbound min size
max size, then the function always iterates size times, and some specific optimizations
can be enabled. Since it doesn’t modify the core of our design, we won’t mention it in
the rest of this document.

It is necessary here to state how metadata is stored: during the generation of the
Intermediate Representation, loop bounds are not attached to a loop statement in the
normal way. Instead, a function call is inserted into the code, and the function used is
llvm.loop.bound, which is created in the IR for the sole purpose of keeping the min and
max loop bounds (one might think of it as some sort of vehicle), and is not performing
any computation (in fact, we do not even provide a definition for it, only a declaration,
with attributes to make sure it is not optimized away). This choice of using a function
instead of using the standard metadata mechanism provided by LLVM (and described in
[37]) had to be made to prevent LLVM from removing metadata when merging two basic
blocks. For our modification, we will call a new function llvm.loop.varbound, also
taking two arguments. Using a new function instead of the existing llvm.loop.bound
function is debatable, but it makes it easier to implement the conversion of this function
to machine instructions later on, and let us also clearly separate our work of what has
already been done, which is useful during debugging.

During the generation of LLVM IR, we inspect the previously generated code to find the
instruction that defines our variable. We use this variable to create our function call.
This is the main difference with the existing function, which could simply take a constant
integer argument. We also have to create the definition of this function and add it to the
generated IR.

Implementing this pragma differs with the existing in the way we are parsing our
argument. Since they are not integer values, we store them as a string and convert it to
a special class in LLVM. Then the emission of LLVM IR is handled by a function called
EmitLoopBounds.

Listing 5.1 features a snippet of C code where a function called add_to of which the
body contains a for loop whose loop bound is the second argument of the function. The
pragma is highlighted in magenta. Listing 5.2 shows a part of the LLVM IR generated by
compiling this function, and highlighted in magenta is the call to llvm.loop.varbound
produced by our pragma.

26

5.2. Main Pass

1 int add_to(int x, int add)
2 {
3 #pragma varloopbound min 0 max add
4 for(int i = 0; i < add; ++i) {
5 x++;
6 }
7 }

Listing 5.1: Initial C source code

1 ...
2 for cond:
3 %0 = load i32, i32* %i, align 4
4 %1 = load i32, i32* %add.addr, align 4
5 %cmp = icmp slt i32 %0, %1
6 call void @llvm.loop.varbound(i32 0, i32 %add)
7 br i1 %cmp, label %for.body, label %for.end
8 ...

Listing 5.2: LLVM IR generated from initial C source code

5.1.2 Backend changes
A few changes must be made in the backend. First, we need to modify the Instruction
Selection phase, that will generate a pseudo instruction holding our loop bounds from
the IR. Next, we need to modify the code initializing our Loop Counter, so that it can
accept a variable and not just an integer. Eventually, the function getLoopBounds() is
used in various places to check that loop bounds exist or using them, for each of the place
where it is used we also check that variable loop bounds exists, not just integer ones.

5.2 Main Pass
We will first describe the main pass that uses the data-flow analysis described in Section
3.1, and we’ll cover other changes to the backend in Section 5.3. We are thus not covering
things in the order they take place in the compiler, since some changes described in
Section 5.3 are taking place before the main pass described in the current section in this
document.

Our main pass takes place before the first register allocation. It also takes place before
the loop counter creation and the rewriting of function calls described in subsection 2.4.2.

For each function, we look for calls to llvm.loop.varbound. Then, for each of these
calls, we determine if the provided loop bound is part of the function arguments. If it is,
we verify that this variable has indeed been replaced by a constant by LLVM during its
own optimizations (otherwise, we report an error). If it is not (i.e. the loop bound is
defined inside the function), then we apply the analysis described earlier to see if it is

27

5. Implementation in LLVM

defined by a value known at compile time. Finally, for functions that are not always called
enabled, we look for the maximum loop bound across all function calls, and replace the
call to llvm.var.loopbound by a call to llvm.loop.bound with the constant integer.

The last sentence implies that we have a way to determine what functions are always
called enabled, and this is provided by the constant-loop dominator analysis, as described
in Section 2.2. At this point in the transformation, we already have access to two cloned
functions (suffixed by _sp_ and by _pseudo_sp1) as they have been cloned earlier,
and a latter pass use constant-loop dominance to replace the functions always called
enabled by the _pseudo_sp clone, whereas ’normal’ functions that should be converted
to single-path are replaced by their _sp_ clones.

Any data-flow analysis is greatly simplified in LLVM IR, since it is in SSA-form, meaning
each variable has only one definition. Our implementation of the reaching definitions
analysis is very classical and uses a worklist algorithm, a well-known optimization over
the iterative algorithm.

To begin, we map each instruction in our function to a unique index, representing the
order in which they appear. Since definitions are uniquely identified by instructions,
these indices are a convenient way to represent reaching definition information. Next,
we define a class to represent this information, that is just a set of integers. Edges are
represented by a pair of integers. The class holding our information contains procedures
to join information. Instructions indices are also used in the worklist.

Then, we need to implement the transfer functions for different categories of LLVM
IR instructions. For instructions that define variables (return a value), we update the
reaching definitions based on the index of the defining instruction. For instructions that
do not return a value, treat them as if they don’t define any variables.

5.3 Making use of our variable

Next we need to modify the code initializing the loop counter, and instead of the upper
bound as an integer, we can give it the variable specified as a loop bound.

Finally, there are many places scattered across the code where the transformation is
checking that the code has loop bounds correctly set and sometimes tries to use them (as
an example, the assembly emitter currently emits the loop bounds as comments alongside
the assembly), so we have to handle all of these cases by also providing a way to check
that variable loop bounds are defined, and if the current code expects an integer, remove
that usage.

1_sp will be the single-path function and pseudo_sp the pseudo root function, as explained in 2.4.2
and 2.2

28

5.4. Handling of LLVM intrinsics

5.4 Handling of LLVM intrinsics
Finally, we cover an application of our work in this last subsection : the handling of
LLVM’s memcpy intrinsic.

The C library function void *memcpy(void *dest, const void *src, size_t n)
copies n characters from the object pointed by src to the object pointed by dest.

The LLVM compiler has its own intrinsic memcpy function. It does so in order to generate
more efficient code, as the behavior of the memcpy function can be optimized by different
architectures.

For Patmos, the compiler currently checks that n is an integer value, and if it is, replaces
the memcpy intrinsic by a loop doing the copy from src to dest. With our changes, we
can lift this restriction, and generate the code for memcpy even if n is a variable. Our
main transformation pass will then have the duty of verifying that this loop bound, as
every other, is constant.

This loop is composed of multiple statements, then we introduce a call to llvm.loop.varbound
to continue iterating the correct number of times.

29

CHAPTER 6
Tests and Results

6.1 Unit tests

6.1.1 Backend
During the development, we used the LLVM test framework, llvm-lit. It allows us to
write a program in LLVM IR, and specify a set of inputs and their associated expected
outputs. Both input and output are an integer. Each unit test in LLVM in then run
with different configurations (configurations modifies things such as the optimization
level of the program, the activation of single-path specific optimizations or features). In
total, there are 48 different configurations for each test (a detail of these configurations
is provided in Appendix A), and these tests are run 5 times with 5 different inputs for
each configuration. Additionally, different runs are compared between them, to ensure a
constant execution time.

The interesting part is that we could set up these tests even before starting to build
our solution. This aligns with the Test-Driven Development (TDD) approach[38], that
consists of developing a new program in order to solve previously defined test cases, one
test case at a time.

6.1.2 Frontend
Once our pragma has been implemented, we can also test it by compiling only from
C source code to LLVM intermediate representation, and checking that the correct
instructions have been attached to our loops. The testing here is simpler, as it is not
run through different configurations (since it is only the frontend and that the actual
transformation takes place in the backend). We use these tests essentially to verify that a
pragma in our source code produces the correct call to llvm.loop.varbound in LLVM
IR.

31

6. Tests and Results

6.2 Benchmarks

6.2.1 TACLe

In many of the papers related to single-path code, the benchmark suite used was the
TACLe benchmark suite, which consists of a collection of small C programs implementing
simple algorithms (matrix multiplication, searching algorithms, car-window control
system, etc.). This benchmark collection is used, for instance, in [39] or [13]. In order
to actually run the programs, we use the Patmos Simulator, which can run programs
compiled for Patmos and provide statistics about the program execution [8]. The key
metric that we will use here is the number of cycles taken to execute our programs. To
compile our programs, the only options that we use are :

• -mpatmos-enable-cet : To enable single-path code.

• -mpatmos-cet-function : That is needed to specify what the root function for
single path will be.

• -O2 : This is the default optimization level for tests.

However, this series of tests is not suited at all to our work, since most of the loops in
these programs have a fixed number of iterations (i.e. Each loop will iterate N times,
the upper and lower iterations number are the same). Since our work focuses on letting
programmers define the upper bound as a variable, this is worthless. Appendix A details
the situation of each program and how they fit and do not fit for our project.

While the nature of this test suite makes evaluating our solution complex, it can still
be used to observe the impact on execution times. To do this, we replace one of the
loopbound pragmas with a varloopbound pragma in the programs we want to test. In
some cases, we may also modify the function containing the loop.

6.3 Artificial programs

We will now present several programs that we know are supposed to be improved by our
work, and determine if this is effectively the case.

The first program, bsort, is a sorting program that is going to sort arrays of different
sizes (one array per size is sorted), using bubble sort. The main sorting function
takes a parameter specifying the size of the array for the new implementation. For
the implementation, we specify the loop bound as #pragma loopbound min 10 max
MAXSIZE, with MAXSIZE varying between different tests cases. Results are summarized
in the Table 6.1 below.

32

6.3. Artificial programs

1 int main() {
2
3 bsort_Initialize(Array100, 100);
4 bsort_Initialize(Array1k, 1000);
5
6 bsort_BubbleSort(Array100, 100);
7 bsort_BubbleSort(Array1k, 1000);
8
9 ...

10 }

Listing 6.1: Parametrized bsort

The next program (matrix1) is performing a matrix multiplication. Originally, it only
performs one multiplication between two 10 by 10 matrices. To test it, we parametrize
the function effectively doing the multiplication, and run it two times, one with two
10x10 matrices, one with two 20x20 matrices.

1 int main(void)
2 {
3 matrix1PinDown(&matrix1_A[0] , &matrix1_B[0] , &matrix1_C[0] , 100) ; // 10∗10
4 matrix2PinDown(&matrix2_A[0] , &matrix2_B[0] , &matrix2_C[0] , 400) ; // 20∗20
5
6 matrixMain(&matrix1_A[0] , &matrix1_B[0] , &matrix1_C[0] , 10) ;
7 matrixMain(&matrix2_A[0] , &matrix2_B[0] , &matrix2_C[0] , 20) ;
8
9 . . .

10 }

Listing 6.2: Parametrized matrix1

Lastly, we can rewrite the test program cover.c, that is also part of the TACLe suite. This
program assesses the coverage of switch statements. It does so by having three functions
containing a for loop incrementing a variable called i from 0 to 10, 50 and 120 respectively.
Then inside this for loop is a switch statement on the value of i, and for each value a
global counter is incremented. At the end of the program, the counter is thus equal to
10 + 50 + 120 = 180. The choice of having three functions instead of one function with
a parameter for the number of iterations of the loop is done to optimize manually the
program for single-path code. We can use our modification to parametrize this function
and call it three time with the values of 10, 50 and 120, and use the new pragma to
specify this new parameter as the loopbound. To benchmark cover, we compare to the
parametrized function that could have been written before with a maximum number of
iterations of 120.

The results for each program are given in table 6.1. For each program, we compute the
performance increase between the old version and the new version using the formula :

oldV ersion − newV ersion

oldV ersion
× 100

33

6. Tests and Results

Program Performance Increase (%)
bsort 45.0
matrix 48.9
cover3 12.8

Table 6.1: Benchmark Results

34

CHAPTER 7
Conclusion and Further Work

To conclude, we tried to solve the problem by using a constant propagation algorithm
as well as our own analysis to identify and propagate constant variables used as loop
bounds. This solution has been implemented in the LLVM-based Patmos Compiler. As
a first step, the compiler was also modified to accommodate for the use of variables as
loop bounds.

The fact that we are relying on LLVM’s built-in optimization can be seen as a strong
limitation, since some cases won’t be handled. For instance, if an argument of a function
is constant in one file, and used in another file, and that these two files are compiled
separately and linked afterward. Despite this, our meticulous testing showed that our
solution is effective for a wide variety of real-world cases. Furthermore, testing has shown
that some performance improvements can be made where they were expected to be, with
up to ∼49% speedup for ideal cases.

Another aspect of our work that could be improved is the way we are dealing with
LLVM’s intrinsic. Currently, when we are meeting a memcpy intrinsic, we just replace it
with a loop. What could be done instead is defining a built-in function for the compiler
and replacing the intrinsic call with this function using the new pragma.

Another aspect of this work that could be improved is the implementation of our solution.
There are indeed a few instances of duplication. For instance, we added a new pragma
called varloopbound, but there is already a pragma called loopbound, and we could use
this already existing pragma to also specify loop bounds depending on variables, which
would require a change in the parsing of the pragma. Due to how the parsing of variable
is implemented in the current pragma, it should not be difficult to implement this change.
Another instance of such duplication is the function used to store loop bounds in the
LLVM IR : varloopbound. The already existing function llvm.loop.varbound could
be used here, as it has the same argument’s list. This change would affect the lowering
of instructions, but as for the previous one, it should not be too difficult to implement.

35

APPENDIX A
Tests

In this appendix, we provide details about the testing of our implementation with the
LLVM unit testing framework. The first part is the list of the different options used to
test our programs, the second part will be an explanation of our tests.

To test each program in LLVM, we have a test_matrix specifying options. This matrix
is composed of two lists, and each element of the two list must be combined with every
element in the other group.

The first list is composed of the following options, where the first element of the tuple is
an option to llvm, and the second element is an option passed to the Patmos simulator.

• ("", "") : Traditional Code

• ("-mpatmos-serialize=" + compiled + ".pml -mpatmos-serialize-functions="
+ sp_root, "") : Single-Path Code without dual issue

• ("-mpatmos-singlepath=" + sp_root + " -mpatmos-disable-vliw=false",
"-D ideal") : Single-Path Code with dual issue

• ("-mpatmos-singlepath=" + sp_root + " -mpatmos-enable-cet=opposite",
"-D lru2") : Constant execution time using opposite predicate compensation

• ("-mpatmos-singlepath=" + sp_root + " -mpatmos-enable-cet=counter",
"-D lru2") : Constant execution time using decrementing counter compensation

• ("-mpatmos-singlepath=" + sp_root + " -mpatmos-enable-cet=counter
-mpatmos-cet-compensation-function=__patmos_comp_fun_for_testing",
"-D lru2") Constant execution time using decrementing counter compensation
with pointer to specific function

37

A. Tests

• ("-mpatmos-singlepath=" + sp_root + " -mpatmos-enable-cet=hybrid",
"-D lru2") : Constant execution time using heuristic choice between other algo-
rithms

The second list is composed of the following options :

• -O1 : Somewhere between no optimization and moderate optimization.

• -O2 : Moderate optimization level.

• -O2 -mpatmos-disable-pseudo-roots : Disable pseudo-root functions.

• -O2 -mpatmos-disable-countless-loops : Disable countless loops optimiza-
tions.

• -O2 --mpatmos-max-subfunction-size=64 : Low subfunctions size to make
sure the splitter is working.

Here is a short description of some (the most significant) of our unit tests. It goes without
saying that they all use our new pragma.

• Case 1: This simple test simply consists of a loop in the main function. This loop
iterates v times, with x a global variable equal to 10

• Case 2: This simple test simply consists of a loop in the main function. This loop
iterates x times, with x being an input argument of the program. Since we are not
able to determine the maximum number of iterations of the loop, this program is
expected to fail.

• Case 3: This test case has two functions, main and add_to. The add_to function
takes three parameters, one of them (x) is incremented by a loop (each iteration
adds one to the value of x), and one is the loop bound given in the pragma. In
the main function, add_to is called with the variable x being an argument of the
program, and constant integer values for the two other parameters of the function.

• Case 4: This test case has two functions, main and add_to. The add_to function
takes two parameters, one of them (x) is incremented by a loop (each iteration
adds one to the value of x), and the second is the number of iteration of the loop.
The loop is given a loop bound value loaded from a global constant. In the main
function, add_to is called with the variable x being an argument of the program,
and constant integer values for the other parameter of the function.

• Case 5: This test case is similar to the case 3, except this time the call to add_to
uses a variable for the loop bound. The only way for LLVM to generate such IR
is that it cannot determine the loop bound argument to be constant when calling
add_to, thus we expect this test to fail.

38

• Case 6: This test case only has a main function. In it, it checks if the input
parameter x is odd. If it is odd, it defines the result variable to be equal to 8;
otherwise, it sets it equal to 6. The program then enters a loop that accumulates
the sum of a constant value (1) until it reaches the computed result. The loop
bound variable used is the result variable defined earlier. Since its definition
depends on the input of our program, we expect this test case to fail.

• Case 7: This test case is similar to tests cases 3 and 5, except this time the main
function calls add_to two times, and each times it gives it constant value for the
loop bound argument. This test case is an illustration of what is defined in the
design as ”Interprocedural Case 1”.

• Case 8: This test case also consists of a main and a add_to function. Similarty
to test case 4, add_to has two parameters. It is called two times (and both times
with the loop bound argument given as an integer in the function call), but in two
separate branches (thus it is not always called enabled). This is an illustration of
what is defined as ”Interprocedural Case 2”, we are testing if our pass is able to
determine the maximum loop bound.

• Case 9: This test case program defines two functions: double and add_to

The ”double” function takes an integer argument, called input performs two loops.
The first loop accumulates the sum of the constant value 1 for input/2 iterations,
and the second loop accumulates the sum of the constant value 2 for input/10
iterations. The final returned result is the sum of the results from both loops.
The main function checks if its input x is odd. If true, it calls the add_to function
with parameters (x, 9, 10) and stores the result in a variable. If x is not odd, it
calls the ”double” function with the argument 10 and stores the result in another
variable. The final result is determined by the phi node based on the condition,
and the overall result is returned.

• Case 10: This LLVM IR program defines three functions: add_to, func1, and
func2, as well as the main function.
The ”add_to” function implements a loop that increments x by 1 for a total of
iterations iterations, with the loop bound specified by the parameter bound. The
main function calls add_to twice with different sets of parameters through the
helper functions func1 and func2. The final result, representing the accumulated
sum of both function calls, is returned by the main function.

39

List of Figures

2.1 Traditional CFG . 8
2.2 Single-Path CFG . 9
2.3 Example CFG . 10
2.4 Loop Header tree of the graph . 10
2.5 FCFG of the top-level pseudo-loop . 10
2.6 FCFG of the loop with header c . 10

41

List of Listings

2.1 Update of x by branching . 6
2.2 Update of x by predicated assignments 6
4.1 Code snippet from file cover.c, using integers as loop bounds 20
4.2 Main function from file cover.c, that is calling three different functions

differing only by the number of iterations 20
4.3 Code snippet from file cover.c, using a variable as loop bound 20
4.4 Intraprocedural Case . 22
4.5 Interprocedural Case 1 . 23
4.6 Interprocedural Case 2 . 23
5.1 Initial C source code . 27
5.2 LLVM IR generated from initial C source code 27
6.1 Parametrized bsort . 33
6.2 Parametrized matrix1 . 33

43

List of Algorithms

3.1 Iterative algorithm for forward data-flow problems [25] 14

45

Bibliography

[1] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C. Buttazzo.
Deadline Scheduling for Real-Time Systems. Springer US, Boston, MA, 1998.

[2] Thomas Huybrechts, Siegfried Mercelis, and Peter Hellinckx. A New Hybrid Ap-
proach on WCET Analysis for Real-Time Systems Using Machine Learning. In
Florian Brandner, editor, 18th International Workshop on Worst-Case Execution
Time Analysis (WCET 2018), volume 63 of OpenAccess Series in Informatics (OA-
SIcs), pages 5:1–5:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. ISSN: 2190-6807.

[3] Enrico Mezzetti and Tullio Vardanega. On the industrial fitness of wcet analysis.
In Proceedings of the 11th Int’l Workshop on Worst-Case Execution-Time Analysis,
2011.

[4] P. Puschner and A. Burns. Writing temporally predictable code. In Proceedings of
the Seventh IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems. (WORDS 2002), pages 85–91, January 2002. ISSN: 1530-1443.

[5] Peter Puschner, Raimund Kirner, Benedikt Huber, and Daniel Prokesch. Compiling
for Time Predictability. In Frank Ortmeier and Peter Daniel, editors, Computer
Safety, Reliability, and Security, Lecture Notes in Computer Science, pages 382–391,
Berlin, Heidelberg, 2012. Springer.

[6] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso,
Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann,
Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop,
Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Peter Puschner, André Rocha,
Cláudio Silva, Jens Sparsø, and Alessandro Tocchi. T-CREST: Time-predictable
multi-core architecture for embedded systems. Journal of Systems Architecture,
61(9):449–471, October 2015.

[7] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel
Prokesch. Patmos: a time-predictable microprocessor. Real-Time Systems,
54(2):389–423, April 2018.

47

[8] Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch, and Daniel
Prokesch. Patmos reference handbook. Technical University of Denmark, Tech. Rep,
2014.

[9] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 9(3):319–349, July 1987.

[10] Frances E. Allen. Control flow analysis. ACM SIGPLAN Notices, 5(7):1–19, July
1970.

[11] Daniel Prokesch, Stefan Hepp, and Peter Puschner. A Generator for Time-Predictable
Code. In 2015 IEEE 18th International Symposium on Real-Time Distributed
Computing, pages 27–34, April 2015. ISSN: 2375-5261.

[12] G. Ramalingam. On loops, dominators, and dominance frontiers. ACM Transactions
on Programming Languages and Systems, 24(5):455–490, September 2002.

[13] Emad Jacob Maroun, Martin Schoeberl, and Peter Puschner. Constant-Loop Domina-
tors for Single-Path Code Optimization. In DROPS-IDN/v2/document/10.4230/OA-
SIcs.WCET.2023.7. Schloss-Dagstuhl - Leibniz Zentrum für Informatik, 2023.

[14] Joseph C. H. Park and M. Schlansker. On Predicated Execution. 1991.

[15] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75–86, March 2004.

[16] Alfred V. Aho and Jeffrey D. Ullman. Optimization of Straight Line Programs.
SIAM Journal on Computing, 1(1):1–19, March 1972.

[17] Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne Ferrante. Predicated
Static Single Assignment. In Proceedings of the 1999 International Conference on
Parallel Architectures and Compilation Techniques, PACT ’99, page 245, USA,
October 1999. IEEE Computer Society.

[18] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving program termi-
nation. Communications of the ACM, 54(5):88–98, May 2011.

[19] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound Analysis of
Imperative Programs with the Size-change Abstraction (extended version), March
2012. arXiv:1203.5303 [cs].

[20] Moritz Sinn and Florian Zuleger. LOOPUS - A Tool for Computing Loop Bounds
for C Programs. In EPiC Series in Computing, volume 1, pages 185–186. EasyChair,
June 2012. ISSN: 2398-7340.

48

[21] Emad Jacob Maroun, Martin Schoeberl, and Peter Puschner. Compiler-Directed
Constant Execution Time on Flat Memory Systems. In 2023 IEEE 26th International
Symposium on Real-Time Distributed Computing (ISORC), pages 64–75, May 2023.
ISSN: 2770-162X.

[22] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO
’96, Lecture Notes in Computer Science, pages 104–113, Berlin, Heidelberg, 1996.
Springer.

[23] Pornin, Thomas. SSL Git Repository. Available at https://www.bearssl.org/
gitweb/?p=BearSSL.

[24] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
Alive2: bounded translation validation for LLVM. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, PLDI 2021, pages 65–79, New York, NY, USA, June 2021. Association
for Computing Machinery.

[25] Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[26] Gary A. Kildall. A unified approach to global program optimization. In Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL ’73, pages 194–206, New York, NY, USA, October 1973. Association
for Computing Machinery.

[27] Keith D. Cooper and Linda Torczon. Engineering: A Compiler. Morgan Kaufmann,
Amsterdam Heidelberg, 2nd edition edition, February 2011.

[28] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools: International Edition. Pearson, Boston, Mass.
Munich, 2 edition, February 2007.

[29] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems, 13(2):181–210,
April 1991.

[30] John H. Reif and Harry R. Lewis. Symbolic evaluation and the global value graph.
In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’77, pages 104–118, New York, NY, USA, January
1977. Association for Computing Machinery.

[31] Ben Wegbreit. Property extraction in well-founded property sets. IEEE Transactions
on Software Engineering, SE-1(3):270–285, September 1975. Conference Name: IEEE
Transactions on Software Engineering.

49

https://www.bearssl.org/gitweb/?p=BearSSL
https://www.bearssl.org/gitweb/?p=BearSSL

[32] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Sørensen, Peter Wägemann, and
Simon Wegener. TACLeBench: a benchmark collection to support worst-case
execution time research. January 2016.

[33] LLVM’s Analysis and Transform Passes — LLVM 12 documentation. Available at
https://releases.llvm.org/12.0.1/docs/Passes.html#passes-sccp.

[34] Castro-Godínez, Jorge and Daniel Moya. CES / clang-custom-pragma · Git-
Lab. Available at https://git.scc.kit.edu/CES/clang-custom-pragma, Au-
gust 2018.

[35] Guelton, Serge. Implementing a Custom Directive Handler in Clang.
Available at https://blog.quarkslab.com/implementing-a-custom-
directive-handler-in-clang.html.

[36] Simone Pellegrini. An experimental framework for Pragma handling in Clang. 2013.

[37] LLVM Language Reference Manual — LLVM 19.0.0git documentation. Available at
https://llvm.org/docs/LangRef.html#metadata.

[38] Jeff Langr. Modern C++ Programming with Test-Driven Development: Code Better,
Sleep Better. Pragmatic Bookshelf, Dallas, Tex., 1st edition edition, November 2013.

[39] Emad Jacob Maroun, Martin Schoeberl, and Peter Puschner. Towards Dual-Issue
Single-Path Code. In 2020 IEEE 23rd International Symposium on Real-Time
Distributed Computing (ISORC), pages 176–183, May 2020. ISSN: 2375-5261.

50

https://releases.llvm.org/12.0.1/docs/Passes.html#passes-sccp
https://git.scc.kit.edu/CES/clang-custom-pragma
https://blog.quarkslab.com/implementing-a-custom-directive-handler-in-clang.html
https://blog.quarkslab.com/implementing-a-custom-directive-handler-in-clang.html
https://llvm.org/docs/LangRef.html#metadata

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the work
	Contributions
	Outline

	Background
	Patmos and Predicated Instructions
	Basic Definitions
	The Single-Path Transformation
	The Single-Path Code Generator
	Related Work

	Program Analysis
	Data-flow Analysis background
	Constant Propagation

	Design
	User perspective
	Overall design

	Implementation in LLVM
	Variable Loop Bounds
	Main Pass
	Making use of our variable
	Handling of LLVM intrinsics

	Tests and Results
	Unit tests
	Benchmarks
	Artificial programs

	Conclusion and Further Work
	Tests
	List of Figures
	List of Listings
	List of Algorithms
	Bibliography

