
Internet of Things Testbed
Ein modulares Framework um Schwachstellen zu

finden

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Kevin Gufler, BSc
Matrikelnummer 11775815

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Univ.Lektor Dipl.-Ing. Christian Kudera, BSc
Dipl.-Ing. Michael Pucher, BSc

Wien, 8. Mai 2024
Kevin Gufler Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Internet of Things Testbed
A modular Framework to find vulnerabilities

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Kevin Gufler, BSc
Registration Number 11775815

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Univ.Lektor Dipl.-Ing. Christian Kudera, BSc
Dipl.-Ing. Michael Pucher, BSc

Vienna, May 8, 2024
Kevin Gufler Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Kevin Gufler, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Mai 2024
Kevin Gufler

v

Danksagung

Ich möchte diese Gelegenheit nutzen, um allen zu danken, die mich während der Erstellung
dieser Abschlussarbeit und der Reise durch das Studiums unterstützt und begleitet haben.

Zunächst gilt mein tiefster Dank meiner Familie. Ohne ihre stetige und bedingungslose
Unterstützung wäre diese Arbeit nicht möglich gewesen. Sie waren immer für mich da
und haben mir die Kraft und den Rückhalt gegeben, die ich benötigt habe, um mein
Studium erfolgreich zu meistern.

Ein besonderer Dank geht an meine Tutoren. Ihre fachliche Unterstützung und die
Bereitschaft, sich Zeit für meine Fragen und Anliegen zu nehmen, waren für mich
während des gesamten Forschungsprozesses von unschätzbarem Wert.

Ich möchte auch die Geschwister Moritz und Luise Ilg erwähnen, mit denen ich gemeinsam
die Höhen und Tiefen des Studiums erlebt habe. Eure Freundschaft und Zusammenarbeit
waren eine große Bereicherung für meine akademische und persönliche Entwicklung.

Nicht zu vergessen sind meine Freunde und Freundinen, die stets ein offenes Ohr für mein
Jammern hatten, wenn mal etwas nicht nach Plan lief. Eure Geduld und euer Verständnis
waren eine enorme Hilfe und haben mir immer wieder neuen Mut zugesprochen.

Ich bin jedem Einzelnen von euch zutiefst dankbar für die Unterstützung, Motivation
und die vielen kleinen Dinge, die diesen wichtigen Abschnitt meines Lebens bereichert
haben.

vii

Kurzfassung

Die sich ständig verändernde digitale Landschaft hat zu einem sprunghaften Anstieg
der Nutzung von Geräten des Internets der Dinge (IoT) sowohl im privaten als auch
im beruflichen Umfeld geführt. Dies hat den dringenden Bedarf an starken Cybersicher-
heitsmaßnahmen unterstrichen, um diese Geräte vor ihren zahlreichen Schwachstellen zu
schützen. Mit dem Fortschreiten der IoT-Technologie wird diese zunehmend mit dem täg-
lichen Leben verwoben, so dass die Sicherheit dieser Geräte nicht nur eine Option, sondern
eine Notwendigkeit ist. Diese Arbeit zielt darauf ab, im Bereich der IoT-Cybersicherheit ei-
ne Vorreiterrolle einzunehmen, indem sie ein modulares IoT-Testbed entwickelt, bewertet
und Verbesserungen vorschlägt, um die kritischen Cybersicherheitsherausforderungen für
IoT-Geräte zu bewältigen. In einer Welt, in der IoT-Geräte immer mehr in unser tägliches
Leben integriert werden, ist der Schutz dieser Geräte vor potenziellen Bedrohungen und
Schwachstellen von größter Bedeutung. Das durch diese Forschung geschaffene Testbed
bietet eine zuverlässige Plattform für automatisierte Penetrationstests, die Sammlung
von Informationen und die Darstellung der Ergebnisse in einem klaren Format.

Die erste Phase dieser Forschung konzentrierte sich auf die Architektur des IoT-Testbeds
und betonte dessen modularen Aufbau, der die Integration von Tools zur Durchführung
umfassender Sicherheitsbewertungen erleichtert. Die Fähigkeit des Testbeds, sowohl ein-
als auch ausgehenden Netzwerkverkehr zu erfassen und zu analysieren, wurde ebenso
unter die Lupe genommen wie die Implementierung von automatisierten Testpipelines,
die die Effizienz der Schwachstellenerkennung erheblich steigern.

Die Bewertung des Testbeds zeigte ihre Stärken bei der Identifizierung und Ausnutzung
bekannter Schwachstellen in IoT-Geräten, insbesondere durch den Einsatz von Tools
wie Hydra für Brute-Force-Angriffe und Nmap für Netzwerk-Scans. Allerdings wurden
Einschränkungen bei der Erfassung des eingehenden Datenverkehrs und der Bedarf an
einem breiteren Toolset als Bereiche identifiziert, die eine weitere Entwicklung erfordern.
Die Verwendung von HTML-Jinja-Vorlagen für die Ergebnispräsentation wurde als
Schlüsselmerkmal hervorgehoben, das die Umwandlung von Rohdaten in informative und
ästhetisch ansprechende Formate ermöglicht.

Mit Blick auf die Zukunft beschreiben wir einige Ideen, welche die Verbesserung der
Fähigkeiten des Testbeds zur Informationserfassung, Erweiterung der Testwerkzeuge
und die Erforschung der Integration von maschinellen Lernverfahren zur automatischen
Erkennung von Anomalien umfassen und die nötigen Rechte des Testbeds.

ix

Abstract

The ever-changing digital landscape has seen a surge in the use of Internet of Things
(IoT) devices in both personal and professional settings. This has underscored the urgent
need for strong cybersecurity measures to protect these devices from their numerous
vulnerabilities. As IoT technology advances, it becomes increasingly intertwined with
everyday living, making the security of these devices not just an option but a necessity.
This thesis aims to lead the way in IoT cybersecurity by developing, evaluating, and
suggesting improvements for a modular IoT Testbed designed to tackle the critical
cybersecurity challenges IoT devices face. In a world where IoT devices are becoming
more integrated into our daily lives, safeguarding them from potential threats and
vulnerabilities is paramount. The Testbed created through this research provides a
reliable platform for automated penetration testing, information gathering, and presenting
findings in a clear format.

The initial phase of this research focused on the architecture of the IoT Testbed, em-
phasizing its modular design that facilitates the integration of a diverse array of tools
for conducting comprehensive security assessments. The Testbed’s capability to capture
and analyze both inbound and outbound network traffic was scrutinized, alongside the
implementation of automated testing pipelines that significantly enhance the efficiency of
vulnerability detection.

Evaluation of the Testbed revealed its strengths in identifying and exploiting known
vulnerabilities within IoT devices, particularly through the use of tools such as Hydra for
brute force attacks and Nmap for network scanning. However, limitations in capturing
incoming traffic and the need for a broader toolset were identified as areas requiring further
development. The Testbed’s use of HTML Jinja templates for result presentation was
highlighted as a key feature, enabling the transformation of raw output into informative
and aesthetically pleasing formats.

Looking forward, we outline a roadmap for future work that includes enhancing the
Testbed’s information acquisition capabilities, expanding its suite of testing tools, explor-
ing the integration of machine learning techniques for automated anomaly detection and
permission management for this application.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Related Work 3
2.1 Manual Analysis . 3
2.2 Frameworks . 4
2.3 Device detection . 7
2.4 Malicious traffic detection and manipulation 7

3 Background 9
3.1 IoT Devices . 9
3.2 Kali Linux . 10
3.3 Domain Name System . 11
3.4 Dynamic Host Configuration Protocol (DHCP) 13
3.5 Standard Gateways . 14

4 IoT Framework Implementation 15
4.1 System and Tools selection . 17
4.2 Network Connection . 20
4.3 Device Discovery and First Reconnaissance 22
4.4 Vulnerability Testing . 24
4.5 Log Review and Classification . 26
4.6 Report generation . 26

5 Extending the Framework 29
5.1 Incorporating Alternative DNS/DHCP Services 29
5.2 Extending the IoT Testbed with Custom Tools 31
5.3 Extending the IoT Testbed with pipelines 39

xiii

6 Evaluation 43
6.1 Initial Setup Process . 45
6.2 Traffic analysis . 46
6.3 Tool execution . 51
6.4 Automatic classification and dynamic reporting 54

7 Conclusion and Furture Work 61
7.1 Conclusion . 61
7.2 Future Work . 62

List of Figures 65

List of Tables 67

List of Listings 69

Bibliography 71

CHAPTER 1
Introduction

The Internet of Things (IoT) growth represents a paradigm shift in the interaction
between the digital and physical worlds, affecting a broad spectrum of sectors, including
agriculture, healthcare, and urban development. IoT devices, by offering real-time moni-
toring and control capabilities, have the potential to significantly enhance productivity
in agriculture through environmental monitoring, improve quality of life with intelligent
healthcare solutions [21], and increase the sustainability of urban environments through
the implementation of ’Smart Cities’ technologies. These technologies facilitate noise
pollution monitoring, efficient traffic light management, and sophisticated waste manage-
ment systems [23]. Currently, 17.08 billion IoT devices are in use, and this number is
expected to grow to 29.42 billion by 2030 [1].

Despite these advancements, integrating IoT technologies brings forth substantial secu-
rity concerns, particularly considering the grave implications of a compromised device.
The automotive industry, for example, has witnessed life-threatening incidents due to
sophisticated cyber-attacks, leading to sudden and unexpected vehicle stops on highways
[15]. Likewise, in the healthcare domain, a breach in the security of smart devices
could pose severe risks to patient safety. Examples of this have already been seen with
different hospitals being targeted by Ransomware; in 2022 alone in the USA, 66% of
hospitals have been targeted by a ransomware attack [2]. Poorly secured IoT devices
might function as a jump host to allow such attacks [8] or steal valuable information.
Furthermore, the infrastructure of Smart Cities, despite its innovative approach to urban
management, is susceptible to significant security threats, given the extensive array of
services it encompasses and the vastness of its network [23].

The risk extends beyond physical damage or disruption of services; the digital realm is
equally vulnerable. This was starkly illustrated by the Mirai Botnet incident, wherein
over half a million IoT devices with inadequate security were commandeered to execute
large-scale Distributed Denial of Service (DDoS) attacks, affecting not just individual

1

1. Introduction

devices but the broader digital ecosystem [7, 19]. Incidents like this Botnet happen
because of poorly secured IoT devices, e.g. through the use of standard credentials.

A study showed that 70% of IoT devices have security flaws. Further claiming that
each device contains an average of 25 flaws [8]. The fundamental challenge lies in
the intrinsic characteristics of IoT devices. With limited computational resources and
aggressive pricing strategies, these devices often come equipped with software poisoned
with vulnerabilities [8]. Such weaknesses render the devices a target for exploitation
by malicious entities. As the IoT landscape continues to expand, these vulnerabilities
present an escalating threat, posing risks to individual devices and the integrity of
broader networks to which they are connected, potentially compromising more sensitive
systems and information[8]. By performing passive network traffic analysis, a device
might identify a different IoT device through their traffic; this allows for exploiting a
known vulnerability for a specific device/software version [6]. These vulnerabilities are
not only used by an attacker trying to build big botnets to steal knowledge worth millions
of dollars [5], but advertisers might also use them to listen to consumers [4].

In this thesis, we show the design, implementation, deployment, and expansion of a new
modular IoT Testbed that allows its users to quickly set up their private Testbed and
use it to test devices for vulnerabilities by starting different tools or pipelines. Since the
landscape of IoT devices advances so fast, some tools might become obsolete, or newer
tools will be needed. We address this issue by allowing for a modular toolkit design so it
can easily be expanded to allow for a new threat exploit. Tools in this field often do not
allow an easy entry for users to check for vulnerabilities in their smart home appliances
by demanding a good foundation about IoT Devices or how they work. We also address
this issue by enabling users to add new tools easily and receive generated reports showing
problems on one collective PDF.

Based on this existing research, we formulated the research questions alongside the
contributions that are made to answer them:

(R0): Can a device be identified by its traffic in a non-ML way and is user information
being leaked?
To answer this, the Testbed that is being developed with this thesis is going to be
used to check for any leaked data in the network traffic of the test device set.

(R1): Can tools be collected to a pipeline to share information and create an attack
workflow?
This work will contribute to this question by making a small set of tools showcasing
the Testbed’s extensibility and allowing for pipelines (chained tools).

(R2): Is there a way to allow for dynamically generated PDF exports where the design is
easily changeable?
By finding a way to classify tool executions automatically by several factors and
collecting them to create a report that supports templating.

2

CHAPTER 2
Related Work

The world of IoT security has witnessed significant attention aimed at identifying potential
vulnerabilities within devices and analyzing their firmware components or their traffic
[24, 17, 18, 22, 6]. This pursuit is paralleled by efforts to construct specialized Testbeds
designed for the examination of IoT devices or even other devices such as wearables [16].

This chapter will now list different approaches in those fields, starting with manual
analysis and then showing a list of different Testbeds and frameworks to automate the
testing. After that, some notable papers are shown in the field of device detection, which
uses mainly machine learning approaches. Lastly, it covers some works in the field of
malicious traffic detection and manipulation of the IoT devices’ traffic.

2.1 Manual Analysis
There are several different approaches to attacking and analyzing IoT devices without
using a Testbed. The work of Mohd Bakry et al. [38] employs three tools to analyze and
attack a Raspberry PI. The attacks are a brute force, a Man in the Middle (MiTM), and
a DoS attack with the tools Nmap, Bettercap, and Xerosploit. The setup is a Raspberry
PI running SSH and VNC which is connected to a router. The attacker connects itself to
the same router and runs these tools. All of the attacks succeeded, and they argue that
future research should be done with those attacks on different IoT devices since the test
with the Raspberry PI reveals that vulnerabilities could be found in most embedded or
IoT-related controllers such as drones, smart bulbs, smart locks, and other IoT devices.

The following work by Ronen et al. [39] analyzed smart bulbs security issues by attempting
to gain control over the bulb from 100 meters away with their own receiver. In the test set
are high-end and lower-end smart light systems, ranging from an expensive Philips HUE
system to a cheap system manufactured by LimitlessLED. They conducted two different
tests; the first one concentrated on using smart lights as a covert LIFI communication

3

2. Related Work

tool to read data from an office building 100 meters away. The second test focused on
gaining control of a light bulb and letting it strobe at a specific frequency that may
trigger seizures in people who have photosensitive epilepsy.

Another interesting work in this field comes from Seralathan et al.[40], where they tested
an Anip smart camera for vulnerabilities. As tools, they used Nmap to brute force port
RTSP to get a video stream and a Man in the Middle (MITM) attack to analyze the
traffic with Wireshark. In this process, they were able to find real-time streams and
credentials stored in clear text in the mobile application.

Another approach has been done by Akhilesh et al. [11] by using a Testbed with a Kali
Linux server, a WLAN Access Point, and a test set of 5 IoT devices. The goal of this
research was to find the most common vulnerabilities that appear in the test set. They
further created a new evaluation score, which encompasses more metrics than the current
CVSS score to indicate the impact of the given vulnerabilities.

Wood et al. [47] created a paper that introduced a method to capture traffic from medical
IoT devices, which then gets analyzed in an automated way, and cleartext information
that may reveal sensitive medical conditions and behaviors can be detected. Using two
smart scales, two blood pressure monitors, and a blood sugar monitor in this analysis,
they found cleartext identification and medical information using a dictionary list of the
100 most common medical terms. One blood pressure monitor even leaked its device
type as well as the user behavior in using it.

2.2 Frameworks
By creating a framework those functionalities and routines can be encapsulated and even
automated. Efforts in this direction is being demonstrated by the following papers and
projects.

One Testbed is SAFER, proposed by Oser et al.[10] it can be used to determine a risk
assessment score by analyzing the firmware and using the National Vulnerability Database
(NVD). This work used a set of 38 devices to show that their framework can give a good
evaluation of the current risk and even further can predict the future risk of a device by
analyzing indicators such as response time of fixes for security patches.

Also, in the enterprise area, different approaches have been taken to create a Testbed to
pentest IoT devices. One of these projects is the FIT IoT-Lab [9]. This platform contains
an extensive network with over 1500 nodes that facilitate a wide range of experiments
and tests. Its primary emphasis, however, is on evaluating networking capabilities within
small wireless sensor devices and a variety of communicating objects, thus limiting its
focus on direct vulnerability assessment within devices.

National Instruments posed another solution [20] where researchers there developed a
Testbed tailored for the research of security vulnerabilities in IoT devices, employing
methodologies such as port scanning, process enumeration, device fingerprinting, and

4

2.2. Frameworks

vulnerability scanning. Their focus spanned across an array of devices, including smart
home appliances, sensors, and wearables some of those devices are a Nest Cam, Philips
Hue, Amazon Echo and SENSE Mother. Since this is a proprietary and closed-source
National Instruments TestStand, it is not open for normal consumers to use this platform
to quickly check for vulnerabilities in their smart home. Further, its closed sources
prohibit developers from just creating a new tool in the Testbed if the need exists.

A further contribution to the field is represented by the SecuWear tool [16], created for
the extraction of vulnerabilities and information from wearable devices. This approach is
characterized by an exhaustive data collection phase followed by a set of targeted attacks
on wearables. Despite its innovative approach, the tool’s application is predominantly
limited to wearables, leaving its utility for a broader spectrum of IoT devices as an area
for further exploration.

An additional notable development in this space is the introduction of Zingbox IoT
Guardian by Paloalto [34], a comprehensive platform designed for the lifecycle manage-
ment of IoT devices. This solution not only facilitates initial device setup and robust
security enforcement but also provides an intuitive interface for data interaction. It
enables users to automate the identification of threats and the execution of corresponding
mitigation strategies. Despite these advanced features, as it is with the tool from National
Instruments, this tool is also closed-source, and its model of subscription-based access
may limit its reach.

An exemplary project of notable significance within the realm of IoT Testbeds is PentOS
[37], which pioneers the introduction of an advanced Testbed infrastructure. This Testbed
is distinguished by its support for diverse connectivity options, including WLAN and
Bluetooth, and with future changes, the researchers also wants to extend its compatibility
to ZigBee technologies. PentOS is configured to support a predefined suite of tools and
does not allow it to expand its toolset.

Another framework comes from Tekeoglu et al.[41], who, analyzed captured packets from
network layers 2 and 3 by using a hub connecting to two access points and a Kali Linux
machine. Further, they ran Ubertooth on a different machine and also analyzed the
Bluetooth packets with Wireshark. Their test set consisted of HDMI sticks, drones,
wireless cameras, activity trackers, and smartwatches, and to control those devices, they
used a smartphone with dedicated apps on it. By using Nmap and employing weak
password checks or brute force checks, they found a couple of vulnerabilities in the test
devices. However, the whole Testbed is not automated, meaning that attacks can be ran
one after another but cannot be chained to create workflows.

The penetration testing platform from Abu Waraga et al. [42], which assesses risks and
vulnerabilities of their test set of a smart bulb and an IP camera, shows great potential
as it is divided into five modules: GUI, Testing, Network, Monitoring, Reporting, and
Storage. The Testing module utilizes port scanning, vulnerability scans, downgrade
attacks, brute forcing directories, and testing SSL configurations to gather information
about the device or test the vulnerabilities with the following tools, which is not a

5

2. Related Work

Name Contributions Problems
Safer [10] Risk Assessment Score

and NVD.
No modular design.
Does not attack the
device. with different
tools.

FIT IoT-Lab [9] Network with over 1500
nodes.

Not a real Testbed more
an environment to test
IoT devices behavior in
a network.

NI: Let the Cat Out of
the Bag [20]

Testbed with different
approaches to pentest a
device.

Closed-source.

SecuWear [16] Testbed that allows to
scan mostly wearables.

Only wearables so differ-
ent IoT devices can not
be scanned.

ZingBox [34] Testbed that covers the
whole lifecycle of a de-
vice and allows for a gen-
erated export.

Closed-source and
subscription-based.

PentOS [37] A Testbed for devices
connecting via LAN,
WLAN, and Bluetooth
having multiple tools.

PentOSs design is modu-
lar but mostly supports
only its predefined suite
of tools.

Testbed for Security and
Privacy [41]

This Testbed uses a col-
lection of tools and tests
network and bluetooth
devices.

Framework is not auto-
mated.

IoT Security Testbed
[42]

A modular Testbed that
uses a varity of tools to
test for vulnerbailties.

Small number of devices
that were being tested.

Table 2.1: Testbed solutions

complete collection of the ones being used in this project: Nmap, Metasploit, Tshark,
SQLmap, SSLStrip and Nikito. The results showed that the IP camera was vulnerable
to a couple of attacks.

To summarize each project with their problems is listed in Table 2.1. Most of the
solutions are either not modular and do not allow for enhancement of its toolset, are not
open source, or are subscription-based and thus do not allow for a quick check of all the
IoT Devices in a household.

6

2.3. Device detection

2.3 Device detection
In the field of device reconnaissance, some studies have been conducted; for example, the
authors of the paper by Shahid et al. [6] created an experimental smart home network
where they analyzed streams of packets from four different devices. Further, six different
classification algorithms (Random Forest, Decision Tree, SVM (with rbf kernel), k-Nearest
Neighbors, Artificial Neural Network (ANN) and Gaussian Naive Bayes) have been used
to guess the name of the IoT device that is generating traffic having the Random Forest
as their winning classifier. They achieved a minimum accuracy as high as 95%. However,
they had problems classifying devices if they come from the same vendor, as they could
have very similar traffic.

Further, Acar et al.[12] also developed a machine learning approach to detect devices by
their traffic, encrypted or plain. They claim that an adversary passively sniffing the traffic
can achieve a high accuracy of 90% with their model trained from 22 devices. Stating
that the system loses accuracy in a multi-user environment as opposed to a single-user
environment where it is easier to track the behavior of a device.

Another work in this area is the work by Sivanathan et al. [13], who also created a
machine learning project that can identify IoT devices with over 99% accuracy in an
environment of 28 devices.

ProfilIoT [14] is a project very similar to the others, again a machine learning approach
to identify IoT devices by their network traffic. For this, they used a test set of nine IoT
devices and got an overall classification accuracy of 99.281%. They even claim to be able
to identify a device down to the model and not just its brand.

To summarize, each paper is listed in Table 2.2. As we can see, each solution already
provides a good accuracy while detecting different devices of different brands. Difficulty
arises from similar devices from the same brand as they often use a very similar software.
Almost all of the solutions use a AI driven approach to guess the type and brand of the
device they belong to. Those approaches often need a large dataset of devices to train
the underlying model and a large model might bring latency.

2.4 Malicious traffic detection and manipulation
Additional work has been done in the field of mailicous device detection, where the goal
is not to identify the device type, brand, or model but instead to identify devices that
generate malicious or strange traffic.

One of those projects is Ghost[43]. Ghost is a project that can extract meaningful
information from a live traffic capture and detect abnormal situations in the traffic while
also being hardware agnostic so that a vast collection of people can use it. They also
released network traffic data sets that can be used for future analysis.

7

2. Related Work

Name no. of devices accuracy Note
Shahid et al. [6] 4 95% Hard to distin-

guish similar de-
vices of the same
brand.

Acar et al. [6] 22 90% Losing accuracy in
a multi-user envi-
ronment.

Sivanathan et al.
[13]

28 99%

ProfilIoT [14] 9 99.28% Can distinguish
different mod-
els of the same
brand.

Table 2.2: Network traffic analysis

Another project is IoT-Keeper[44], which uses Gated Recurrent Units (GRUs) to analyze
network traffic and detect DOS attacks with a high success rate (TPR = 0.89) and
scanning attacks with a TPR = 1.0. Those high rates, however, come with a high resource
footprint, which means that resource-constrained devices cannot employ this solution.
They compared it with another project and were also able to detect other network attacks,
such as MitM attacks, with their solution.

Another solution by Subahi and Theodorakopoulos [45] that concentrates on the phone,
which gives commands to the IoT devices mainly in the direction of App-to-cloud. They
were able to classify each user’s interaction with the device, label them with a sensitivity
level, and label them with the information that can be found in the package, such as
credentials or user location. While doing so, they achieved a detection for the interaction
labeling rate of 99.4%, they detect packets carrying sensitive information by 99.8% and
further can identify the content type of those sensitive information packets with a success
rate of 99.8%.

Another example is the project of Bachy et al. [46], who analyzed smart TVs traffic
and apps and launched attacks on them. They did this by intercepting channels or
attacking those apps that are running on the TV with four different smart TV types.
They extracted the firmware of those TVs and applied XSS attacks on their web browser
to gather information or gain control over the TV. They found that some TVs were
being updated over an unsecured channel, which made them vulnerable to firmware
modification attacks.

8

CHAPTER 3
Background

The following chapter delves into fundamental knowledge essential to IoT Testbeds and
devices. Its purpose is to equip readers with a grasp of the subject matter, enabling an
understanding of the topics covered in this thesis. Furthermore, it sheds light on the
reasoning behind crucial decisions made throughout the thesis, including those concerning
the selection of the operating system.

3.1 IoT Devices
The Internet of Things (IoT) introduces a new era where everyday objects are intercon-
nected to form a network of intelligent devices. These devices vary in complexity and
capability, from basic sensors to advanced industrial equipment. They are changing the
way people interact with the physical and digital world. IoT devices can communicate
and function over networks, particularly the internet, which facilitates the autonomous
exchange and processing of data.

3.1.1 Diverse Hardware Configurations and Applications
The landscape of IoT (Internet of Things) devices is diverse, reflecting the wide-ranging
applications they are designed for. This diversity highlights the adaptability of IoT devices
to perform specific tasks. For example, a traditional smart thermostat is equipped with
sensors, processors, and communication modules specifically designed for environmental
monitoring and control. In contrast, advanced IoT devices like smart vehicles incorporate
GPS modules, advanced computing hardware, and various sensors designed to perform
multiple tasks, including navigation and safety management.

The design philosophy of IoT devices is centered on optimizing task-specific performance,
emphasizing energy efficiency, compactness, and cost-effectiveness. These principles are
critical for ensuring the scalability and sustainability of the IoT ecosystem, which is

9

3. Background

rapidly becoming a cornerstone of modern technological infrastructure. However, while
IoT devices can gather an enhanced understanding of their environment, they are also
vulnerable to unintentionally disseminating information to malicious entities.

3.1.2 Connectivity and Communication

The functionality of IoT devices is centered around their connectivity, which allows them
to seamlessly integrate into larger networks. Different technologies, such as WLAN,
Bluetooth, Zigbee, and cellular networks, enable this connectivity based on the specific
requirements of each IoT application. Factors such as operational range, data bandwidth,
and energy consumption are vital in determining the appropriate connectivity method.

In addition, IoT devices often operate within larger systems, using gateways to access
the internet or connect to centralized servers. This interconnectedness enhances the
usefulness of IoT devices but can also introduce complications in managing network
traffic and ensuring secure data transmission.

This Testbed is specifically designed to integrate with an existing network infrastructure.
If the WLAN is already operational within the network, it can facilitate the connection
of devices to the Testbed and LAN. While some IoT devices on the market can be easily
used as standalone devices and only need to be connected to a network with a working
network connection, some other devices, such as Zigbee, need a hub to work. While the
testbed planned in this thesis does not support Zigbee directly, a Zigbee station can act
as gateway that is then connected to the Testbed. When using a hub, such as Zigbee,
the devices that are being connected to the smart home network will not directly access
the internet; instead, they will use the route to the hub to access services in the cloud.

3.2 Kali Linux
Kali Linux[31] has emerged as a leading distribution in the field of cybersecurity. It has
been specifically designed for penetration testing and security auditing. This Debian-
based platform is known for its extensive suite of penetration testing utilities. These
tools are carefully selected to cover all aspects of cybersecurity assessments, including
network scanning, vulnerability discovery, wireless network evaluation, and password
integrity testing. The distribution is continuously updated to keep the tools effective
against evolving cybersecurity threats. Kali Linux’s arsenal is a critical asset for anyone
looking to conduct thorough security assessments.
In summary the keypoints of Kali Linux are:

• Open-Source and Accessible: Kali Linux is open-source and free for users. This
accessibility ensures that the Testbed can leverage a state-of-the-art operating
system without incurring licensing fees, thereby reducing operational costs and
facilitating widespread adoption.

10

3.3. Domain Name System

• Pre-configured Tools: Secondly, Kali Linux comes with pre-configured permis-
sions, allowing immediate access to a wide range of tools without the need for
additional permissions or configurations. This readiness significantly streamlines
the setup process, enabling the Testbed to be operational with minimal setup time.

• Comprehensive Security Toolkit: Lastly, Kali Linux offers a collection of ∼600
tools which can easly be used in the Testbed. Two of the tools that are being used
in this thesis are:

– Nmap is a tool for discovering network topologies and auditing network
security. It is widely used for mapping network environments and identifying
potential vulnerabilities [26].

– Hydra is a parallelized login cracker which supports numerous protocols to
attack. It is fast and flexible, and new modules are easy to add [27].

Kali Linux’s integration capabilities with a variety of tools make it a valuable resource
for an IoT Testbed environment. Its collection of tools can be easily incorporated into
the Testbed by writing a wrapper for them, providing a robust framework for conducting
comprehensive security assessments of IoT devices.

3.3 Domain Name System
The Domain Name System (DNS) is like a telephone directory for the internet. It trans-
lates user-friendly domain names into numerical Internet Protocol (IP) addresses, which
are used to locate and identify computer services and devices within network protocols.
This service is crucial to the internet’s usability, as it enables the use of memorable
domain names instead of the complicated numerical IP addresses that computers use to
communicate over the network.

3.3.1 Operational Mechanics of DNS
DNS resolution is a complex process initiated when a user enters a website address into
a browser. The process is designed to locate the IP address corresponding to the website
address. The operational flow of DNS involves several steps:

1. The browser begins by querying a DNS resolver, usually provided by the user’s
Internet Service Provider (ISP). The DNS resolver serves as the initial point of
contact for the DNS lookup.

2. If the DNS resolver does not have the required IP address in its cache, it reaches
out to other DNS servers across the internet to find the necessary information.

3. This inquiry navigates through a hierarchy of DNS servers, starting from the root
name servers, then proceeding to the top-level domain (TLD) name servers (such

11

3. Background

as .com, .net, .org), and finally culminating at the authoritative name servers for
the queried domain.

4. After locating the IP address, it is relayed back to the browser, which can request
the desired web page from the corresponding web server.

This process exemplifies the role of DNS in enabling easy website access through domain
names instead of IP addresses.

3.3.2 DNS Records

DNS servers maintain a set of structured data known as DNS records, which are funda-
mental for the system’s functionality. These records contain the following information:

• A Records (Address Records): The core DNS records associate domain names
with IPv4 addresses.

• AAAA Records: These records are similar to A Records but are used to map do-
main names to IPv6 addresses, which are necessary due to the internet’s expansion.

• CNAME Records (Canonical Name Records): These records enable the
association of an alias name with a valid domain name, allowing for resource
redirection.

• MX Records (Mail Exchange Records): These records specify the mail
exchange servers that are responsible for routing emails to a particular domain.

• NS Records (Name Server Records): These records identify the authoritative
name servers for a domain, which is a crucial element in the DNS lookup process.

3.3.3 Security within DNS

DNS is not immune to security threats. DNS spoofing and cache poisoning are some
of the vulnerabilities that can put users at risk by redirecting them to malicious sites
without their knowledge. To address these concerns, DNSSEC (DNS Security Extensions)
has been developed to provide an extra layer of security and ensure the authenticity and
integrity of DNS data.

As cyber threats continue to evolve, measures to secure DNS are also evolving. Since
Technitium [30] is being used as the DNS server, it is possible to mitigate potential security
threats by configuring records that redirect specific malicious addresses to non-reachable
IP addresses. This helps to obstruct access to harmful domains.

12

3.4. Dynamic Host Configuration Protocol (DHCP)

3.4 Dynamic Host Configuration Protocol (DHCP)
The Dynamic Host Configuration Protocol (DHCP) is a protocol for managing IP
networks. It automates assigning IP addresses, subnet masks, gateways, and other IP
parameters to network devices, making network configuration more effortless.

3.4.1 Operational Mechanics of DHCP
The DHCP protocol uses a client-server architecture to simplify network configuration.
When a device connects to a network, it sends a broadcast request to find a DHCP server.
The server has a pool of IP addresses and relevant configuration settings and offers the
client an IP address lease with necessary network settings for a specific duration.

The process of assigning an IP address to a client device using DHCP involves four steps:

• DHCPDISCOVER: The client broadcasts a request across the network to find
available DHCP servers.

• DHCPOFFER: DHCP servers respond to the client’s request by offering available
IP addresses and network configuration parameters.

• DHCPREQUEST: The client selects one of the offers and formally requests the
proposed configuration.

• DHCPACK: The server acknowledges the client’s request and finalizes the network
settings for the client’s use by leasing the IP address to the client.

3.4.2 The Strategic Role of DHCP
DHCP is an important protocol that helps improve network management efficiency by
eliminating manual IP address assignments. It is especially useful in dynamic network
environments where devices often connect and disconnect and in large-scale networks
where manual configuration can lead to errors and inefficiencies. DHCP can assign
IP addresses, specific DNS servers, and gateway configurations, which is a valuable
feature in IoT Testbeds. This allows for the redirection of all DNS requests and network
traffic through the host machine, which enables traffic capture and analysis. Such a
configuration is essential for monitoring network interactions of IoT devices, diagnosing
issues, and ensuring robust network security measures are in place.

Ensuring that only one DHCP server is operational during the Testbed’s use is essential.
This is necessary because, during the DHCPDISCOVER phase, a pre-existing DHCP
server within the network might issue a DHCPOFFER. Such an occurrence could result
in devices maintaining communication capabilities with other gateways.Then, critical
parameters such as the standard gateway or DNS server may not be accurately configured
in alignment with the Testbed’s requirements. This means that the Testbed will not be
able to capture all the traffic it would otherwise.

13

3. Background

3.5 Standard Gateways
A standard gateway acts as the bridge that allows data to flow between different network
environments, such as a local area network (LAN) and the wider internet. This device
is essential in directing traffic to and from workstations within the network, enabling
smooth data exchange across various network segments.

3.5.1 IoT Testbeds as Standard Gateways
In Internet of Things (IoT) research and development, an IoT Testbed can be specially
configured to act as the main gateway for various IoT devices connected within the
Testbed environment. This unique configuration allows the Testbed to play a central
role in managing and monitoring the data traffic flowing to and from the IoT devices.
The benefits of using an IoT Testbed as a standard gateway are numerous, especially in
terms of data analysis and security evaluation:

• Comprehensive Data Capture and Analysis: The Testbed has a crucial
role as a gateway in the IoT ecosystem. It is uniquely positioned to capture,
record, and analyze the data packets transmitted by IoT devices, enabling a deeper
understanding of their behavior under different conditions and diverse test scenarios.
The analysis can be conducted manually using Wireshark or automated tools like
BruteShark, which can be used to analyze traffic for credentials systematically.

• Advanced Security Assessment: Furthermore, the Testbed’s gateway position
makes it an essential security management component in the IoT ecosystem. By
analyzing the data traffic, the Testbed can detect and evaluate potential security
vulnerabilities, such as unauthorized access or anomalous data patterns that could
signify underlying security threats. This proactive approach to security analysis is
critical for the early detection of vulnerabilities, allowing for timely remediation
measures to be implemented and ensuring the integrity of the IoT infrastructure.

14

CHAPTER 4
IoT Framework Implementation

The IoT Testbed allows for comprehensive security testing of IoT devices, from initial
connection to detailed vulnerability assessment and reporting. The following outlines the
typical journey of a device as it undergoes scrutiny within this environment:

1. Connecting a device to the Testbeds network

2. Discover the device in the Testbed

3. Examine Device Detail and Customization

4. Vulnerability Testing

5. Log Review and Classification

6. Report generation

By looking at this lifecycle, we can see that the Testbed is structured into six main parts,
each responsible for its own specific task. They have little to no coupling, so the modular
design allows for an easy exchange or extensibility of these parts. The system to support
this lifecycle can be seen in Figure 4.1, that shows the structure of the Testbed with all
its components and what runs on them.

• Network Connection
The detection step is the first of the lifecycle of a device in the Testbed. When
looking at the Figure 4.1, those devices might be a Smart Bulb and a Raspberry
Pi that got connected to the local network. This could be over WLAN or LAN
via a wired connection to the router to which the Testbed is connected. Ensure
the absence of other DHCP servers within the network to prevent conflicts and

15

4. IoT Framework Implementation

Figure 4.1: General project structure

ensure the device is correctly connected to the same network as the Testbed since
the devices get polled from the DHCP server. It is important to note that modern
devices often possess the capability to alter their MAC addresses, which can create
challenges in consistently tracking a device’s activity across multiple sessions. To
mitigate this issue and maintain accurate device tracking, it is advised to turn off
any such features that allow for MAC address randomization before connecting the
device to the Testbed.

• Device Discovery
These connected devices will then get an IP address assigned by the Technitium
DNS server which also offers a DHCP service. By using the "Scan connected devices"
button on the Testbed’s homepage, devices can be imported. A notification will
confirm the successful detection of a new device.

• Show Device Detail and Customization
Access the newly discovered device’s detail page to review its information. This
step allows the user to rename the device for ease of identification throughout
the testing process. This is the step where a first simple reconnaissance happens.
Information that can be gathered in this stage is basic networking information such

16

4.1. System and Tools selection

as ip address, host-name and through its mac address a quick vendor lookup can
be facilitated.

• Vulnerability Testing
The next step is to run tools against the device. When doing so, the IoT Testbed
creates a job with the job description and sends it to Redis, the message broker.
The Celery worker then picks these jobs up and runs them. These tools might also
be chained to pipelines, so a sequential execution of different tools is possible.

• Log Review and Classification
After a tool or pipeline has been run, a success check must be performed to
determine whether the tool found any vulnerabilities or whether the device is secure
against a certain attack. This should be done automatically, but the user still has
the possibility of changing the success status if a missmatch occurs.

• Report generation At the end of the test’s, a report should be generated that
gives an overview of what tests have been run and also shows if a vulnerability has
been found, along with further information.

All this information about devices and tools will be persisted in the Postgresql server
seen in Figure 4.1.

The following chapter elaborates on the implementation of the IoT Testbed, describing
those six steps and explaining the methods and technologies employed. It starts with the
foundation on which the Testbed is running, then describes how each part is implemented.

4.1 System and Tools selection
This section details the selection process for the underlying operating system and the
programming language which were used to program the framework. Further the database
system in use is described and why the choice fell on the chosen technology and concludes
with the reasoning behind using Docker.

4.1.1 Operating System selection
The operating system selection involved a few different distributions: Kali Linux, Parrot
OS, and BlackArch.

Each of those three options is being used in the penetration testing and hacking community,
and each has its own toolset and capabilities.

• Kali Linux
Kali Linux [31] is a Debian-based distribution that aims to use free software and
thus comes with ∼600 tools for pen testing. As such, it builds on an existing, very
strong foundation, Debian, and creates a layer on top of its foundation created
specifically for hacking, concentrating on the improvement of such.

17

4. IoT Framework Implementation

• Parrot OS
Parrot OS [32] presents another possible option since it does things very similar to
Kali and is also a Debian-based system. ParrotOS is further compatible with more
systems, such as Kali Linux, and, as such, would allow a broader community to use
it. It offers mostly all the standard tools that Kali offers and further comes with
its own set of tools such as AnonSurf, Wifiphisher, and Airgeddon and, as such,
accumulates a collection of ∼700 tools.

• BlackArch
Blackarch [33], is an Arch-based distribution and comes with a collection of ∼2600
pre-installed tools, and with the Arch User Repository (AUR), offers a lot more
user-contributed packages. Further, it needs fewer resources than Kali Linux and
Parrot OS to run and is overall faster.

The decision, however, fell to Kali Linux as it is a robust operating system, offers many
different tools that are needed, and if something goes wrong, troubleshooting is easier
since the community behind it is bigger than with Parrot OS or BlackArch. Further,
the developer’s familiarity with Kali Linux is greater than that of the other operating
systems.

Although the Testbed has been tested and developed with Kali Linux as its operating
system, it should be usable with ParrotOS since they are very similar in terms of
architecture and tools they offer. It should also run with BlackArch or other different
operating systems.

Python and the Django web framework are the core components of this technologi-
cal framework, and each brings its own distinct benefits that enhance the Testbed’s
development and operational efficiency.

4.1.2 Python
Python has been chosen as the primary programming language for developing the IoT
Testbed for various reasons that make it a suitable choice for this project:

• Comprehensive Library Support: Python has a vast ecosystem of third-party
modules and tools, including support for networking operations, cybersecurity
tasks, and interaction with hardware devices. Python’s libraries, such as Nmap and
Metasploit, provide robust functionalities for network scanning and vulnerability
exploitation, which are crucial for the Testbed’s operations. Additionally, Python
offers numerous tools and libraries relevant to IoT security and network analysis,
making it well-suited for the project.

• Developer Familiarity: Python is a popular scripting language in the information
security community, which the development team is proficient in, which makes it
easier to work with the language and focus on implementing sophisticated features

18

4.1. System and Tools selection

and functionalities rather than navigating the learning curve associated with less
familiar languages.

• Versatility and Readability: Python’s syntax is designed for clarity and sim-
plicity, making it an ideal choice for projects that prioritize rapid development
and maintainability. Its versatility across different programming paradigms and
platforms ensures that Python can adapt to the needs of the IoT Testbed project.

4.1.3 Django
Django is a Python web framework known for its clean and pragmatic design philosophy,
enabling rapid development. It follows the model-view-template (MVT) architectural
pattern, providing a scalable and maintainable component-based architecture [35]. The
selection of Django was influenced by several key attributes, including:

• Rapid Development Cycle: Django aims to expedite the transition from concept
to completion by providing developers with high-level abstractions, shortcuts for
common patterns, and clear conventions. This aligns with the project’s objective
of quickly developing a fully functional IoT Testbed.

• Comprehensive Database Support: Django comes with a database API that
simplifies database operations. The framework’s database abstraction layer auto-
matically generates database schemas from high-level Python data types, simplifying
the process of integrating and managing the Testbed’s data.

• Adaptability to Project Requirements: Django’s modular architecture makes
it flexible and adaptable to meet the specific requirements of the IoT Testbed
project.

In summary, the implementation of the IoT Testbed leverages the strengths of Python
and Django to create a robust, flexible, and efficient development environment. The
combination of Python’s extensive libraries and developer familiarity with Django’s rapid
development capabilities and database support provides a solid foundation for building
and operating the IoT Testbed.

4.1.4 PostgreSQL
PostgreSQL, also known as Postgres, was chosen for the IoT Testbed project’s relational
database management system (RDBMS). Its open-source nature, extensive feature set,
and adherence to technical standards make it a popular choice. PostgreSQL is designed
to manage diverse workloads, from modest applications on single machines to complex
operations across expansive data warehouses or web services catering to numerous con-
current users. It is widely deployed and available across major operating systems like
Linux, FreeBSD, OpenBSD, and Windows, underscoring its versatility and robustness [36].

19

4. IoT Framework Implementation

Integration with Django

PostgreSQL’s integration with Django further justifies its selection as the primary datas-
tore for the IoT Testbed project. The utilization of Django’s Object-Relational Mapping
(ORM) system in conjunction with PostgreSQL enables the creation of data models that
are automatically translated into database schemas.

4.1.5 Docker
The Testbed is comprised of three containers - Technitium, Postgres DB, and Redis as can
be seen in Figure 4.1. These containers are used for the configuration and deployment
process, enabling efficient management and scalability of the DNS/DHCP services, data
storage, and message brokering functionalities.

The IoT Testbed has adopted Docker containers for critical components, offering several
advantages:

• Isolation: Containers provide a segregated environment for each service, minimizing
the risk of conflicts between dependencies and streamlining the troubleshooting
process.

• Portability: Docker ensures that each containerized service can be easily deployed
across different environments, maintaining consistency in operation regardless of
the underlying infrastructure.

• Rapid Deployment: The use of Docker containers significantly reduces the setup
and deployment time for the Testbed, enabling rapid provisioning of services and
iterative development cycles.

In summary, the integration of Docker into the IoT Testbed’s architectural design enhances
the system’s modularity, scalability, and operational efficiency. By containerizing the
Technitium DNS/DHCP service, the PostgreSQL database, and the Redis message broker,
the Testbed achieves a high degree of service isolation, streamlined management, and
robust performance.

4.2 Network Connection
After a device has been added to the Testbed via LAN or WLAN, the DNS logging
happens on the Technitium DNS server; however, some devices might bypass the DNS
logging, as mentioned in the evaluation chapter 6, so the Testbed functions as a gateway
to capture more data about the communication.

20

4.2. Network Connection

Configuring the Standard Gateway in the IoT Testbed

The IoT Testbed serves as a standard gateway for connected IoT devices. To allow
the gateway to function correctly, specific configurations within the underlying Kali
Linux system are necessary to manage network traffic routing. These configurations are
centralized within the testbed/helper/routing.py script, which encapsulates the
essential operations for initializing and cleaning up network routing settings.

Critical Routing Methods

The script provides two critical methods that facilitate the manipulation of network
traffic routing:

• init_routing(): This method is fundamental for enabling the Kali Linux machine
to route traffic from connected IoT devices through to the internet or other network
segments. Upon invocation, it executes critical system commands to modify network
settings. Specifically, it runs the following commands:

sysctl -w net.ipv4.ip_forward=1
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

The first command enables IP forwarding, and the second configures NAT (Network
Address Translation) via iptables. These changes allow the Testbed to function as
a gateway.

• cleanup_routing(): This method disables IP forwarding and clears the NAT
configuration established by iptables. It’s used to revert the system to its default
state or to clean up after a test session. Specifically, it runs the following commands:

sysctl -w net.ipv4.ip_forward=0
iptables -t nat -F

This process ensures that the system’s network settings are reset, preventing
unintended routing or security implications outside of testing scenarios.

Adaptation to Different Systems

Although the provided commands are optimized for Debian/Kali Linux, which is the
default operating system of the Testbed, it is important to note that adjustments may be
necessary if the Testbed is deployed on a different system. The commands for enabling IP
forwarding and configuring iptables may differ across various Unix/Linux distributions.
Therefore, if the IoT Testbed is implemented on an alternate platform, these commands
must be modified accordingly to ensure compatibility and maintain the Testbed’s gateway
functionality.

21

4. IoT Framework Implementation

To simplify these adjustments, the IoT Testbed interface includes a settings tab, which
provides an easy way to update the routing commands as well as the package man-
ager that should be used to install tools and to meet the system’s requirements. In
essence, the testbed/helper/routing.py script and its methods, init_routing()
and cleanup_routing(), are essential to the IoT Testbed’s operation as a standard gateway.
By managing the system’s routing configurations, the Testbed can effectively channel
IoT device traffic, supporting comprehensive network analysis and security assessments
within a controlled testing environment.

4.3 Device Discovery and First Reconnaissance

The Testbed’s design incorporates Technetium DNS, a dynamic DNS server known for
intercepting and analyzing DNS requests. Additionally, Technitium serves as the DHCP
server, facilitating the acquisition of DHCP leases from which connected devices and their
MAC addresses can be identified. This capability enables preliminary reconnaissance of
the device and its vendor by MAC address.

A specialized connector facilitates seamless interaction between the Testbed and the
Technetium DNS server. Utilizing HTTP REST requests, this connector enables the
querying of DNS requests made by connected IoT devices.

4.3.1 Technetium DNS in the Testbed

Technetium DNS [30] offers a versatile set of features that extend beyond the basic
functions of a DNS server. Its capabilities include DNS request logging, traffic analysis,
and providing detailed insights into the network behavior of connected devices. While the
primary focus within this thesis is on capturing and analyzing DNS requests, the broader
potential applications of Technetium DNS in network management and security analysis
are noteworthy since it offers a lot more addons than the one that is being used in the
scope of this project. The one addon that is currently being used with Technitium is
Query Logs (Sqlite) which is responsible to store the DNS queries that are being generated
by the devices. By doing so it allows us to retrieve DNS requests that are being created
by a device to review it in a later moment and download them.

Both the DNS and DHCP functionalities are accessible through the implementation
script located at testbed/helper/dns/technitium.py. Essential parameters for
initializing these services are modifiable within this script and can also be adjusted
through the Testbed’s settings interface. A summary of the DNS and DHCP parameters,
including their configuration and management, is provided in Table 4.1 and Table 4.2,
respectively. The address space allocated for these services is initially set to accommodate
104 addresses, with the option for expansion through the Testbed’s settings.

22

4.3. Device Discovery and First Reconnaissance

Parameter Value
Name technitium
Secret Token
User admin
Password password
Host http://127.0.0.1
Port 5380

Table 4.1: DNS Settings

Parameter Value
Starting Address 192.168.0.150
Ending Address 192.168.0.254
Subnet Mask 255.255.255.0
Server Address 1.1.1.1
Router Address 192.168.0.1

Table 4.2: DHCP Settings

4.3.2 DNS Data Capture
As mentioned before the data captured for each request encompasses several critical
components:

• Client IP Address: This identifies the device making the DNS request, enabling
the tracking of requests back to the originating device and facilitating device-specific
network behavior analysis.

• Requested Domain Name: The specific domain name requested by the device,
offering insights into the external services and resources the device is attempting to
access.

• DNS Record Type: The type of DNS record requested (e.g., A for IPv4 addresses,
AAAA for IPv6 addresses), providing context on the nature of the request and the
information being sought.

• DNS Response: Includes resolved IP addresses as part of the response, delivering
detailed information on how domain name requests are resolved and the ultimate
destination of outbound device traffic.

• Protocol Utilized: The protocol (UDP, TCP) used for the request offers insights
into the communication methods preferred or required by the device.

• Response Type: Indicates the nature of the DNS response—whether the request
was served from cache, blocked, or resolved through recursive queries—shedding
light on the efficiency and security aspects of DNS resolutions.

23

4. IoT Framework Implementation

Access to the data is made possible through the Technitium web user interface, which
can be accessed via the URL: http://<ip_of_testbed>:5380/. This interface provides
a user-friendly portal for direct interaction with the DNS data. Additionally, the IoT
Testbed simplifies the process of retrieving DNS logs through a download feature, making
it easier to analyze the data.

4.4 Vulnerability Testing
The IoT Testbed can accommodate a wide range of tools, making it a versatile platform
for conducting various security analyses on IoT devices. There are no strict criteria for
including tools; any utility processing input and producing output can be seamlessly
integrated as an add-on Python file. The process of creating and integrating these add-on
tools will be discussed in detail in this subsection 5.2.1.

4.4.1 Tools
The IoT Testbed incorporates several tools to showcase its capabilities and provide a
foundation of functionalities. These tools exemplify the kind of add-ons that can enhance
the Testbed’s utility. The following is a list of tools that have already been incorporated:

• Nmap [26]: A network exploration tool and security scanner that can identify
open ports on devices, which can potentially uncover entry points for exploitation.

• Hydra [27]: A tool that facilitates testing of credential strength across services by
conducting rapid dictionary attacks against various protocols. Within the stock
configuration of the IoT Testbed, Hydra is configured to target:

– SSH
– Postgres

• tcpdump [28]: A tool instrumental in capturing network traffic traversing a
specified interface. Devices within the Testbed network are configured to route
traffic through the Testbed as their standard gateway. Tcpdump can effectively log
outgoing traffic, although it may not capture all incoming data.

• Bruteshark [29]: This tool analyzes network dumps to extract credentials and
other sensitive information acting on data captured by tcpdump. It offers a layer
of analysis that complements the data acquisition capabilities of tcpdump.

4.4.2 Pipelines
In the IoT Testbed, pipelines automate the security testing process by orchestrating a
sequence of tool executions. This automation helps streamline the penetration testing
workflow, making security assessments more efficient. An example pipeline, preconfigured
in the Testbed, illustrates the concept:

24

4.4. Vulnerability Testing

1. The pipeline starts with Nmap, which identifies open ports on target devices.

2. Based on Nmap’s findings, the pipeline triggers parallel attacks:

• A PostgreSQL-focused Hydra attack.

• An SSH-targeted Hydra attack.

This pipeline exemplifies the Testbed’s ability to automate sequences of security tests,
showcasing its potential to conduct comprehensive assessments with minimal manual
intervention. Further discussions on custom pipeline development will be provided in
section 5.3.

4.4.3 Optimizing Task Execution with a Dedicated Worker Mechanism

Those tools and programs that can be run either as a standalone tool or as a link of a
chain in a pipeline will be passed on as a job to the Redis message queue and will be
picked up by the Celery worker. The worker mechanism uses Celery, an asynchronous
task, and job queues based on distributed message passing on Redis. This allows the
system to efficiently manage and execute tasks outside of the Testbed’s primary backend
environment [25].

Integration of Celery with Redis

Celery is used as the backbone for task execution within the IoT Testbed, and Redis acts
as the message broker. This setup creates a communication channel between the system’s
backend and the Celery worker. It helps to dispatch and manage tasks, particularly those
that involve tool execution for device analysis.

Execution and Permission Management

To initiate the operation of the Celery worker, the following command is used:

sudo celery --app "testbed" worker --loglevel=info -P prefork

Launching the Celery worker with sudo permissions is essential to execute specific
tasks requiring administrative/elevated network rights, such as network traffic capture
using tcpdump. Running the worker with elevated privileges ensures that it can perform
operations that require direct interaction with system hardware or privileged system
resources.

25

4. IoT Framework Implementation

Benefits of the Worker Mechanism

The implementation of a dedicated worker mechanism through Celery and Redis offers
several advantages to the system:

• Separation of Concerns: By separating task execution from the core backend
logic, the system becomes more clear and maintainable. This separation ensures
that the backend remains responsive and stable, even under heavy computational
loads.

• Enhanced Scalability: The worker mechanism allows for the dynamic scaling
of task execution capabilities based on the current load. This facilitates efficient
resource utilization and minimizes response times for task completion.

• Security and Stability: Running tasks with the necessary permissions ensures
that all operations, even those requiring elevated rights, are executed securely and
reliably. This approach mitigates potential security risks associated with privilege
escalation within the main application.

After a tool has been run, an entry will be created in the framework where the user can
check the success of the previously ran tools.

4.5 Log Review and Classification
To classify the success of tools in an automatic manner for a faster reporting system or
use those results in a pipeline of chained tools, it is essential to find a way to do this in a
dynamic way since not only the return code, for example, should be used but more over
the whole output content of a tool. For this, the IoT Testbed uses the tool Python file,
which should contain a function to check for the success of a tool automatically. More on
this in the evaluation chapter 6.

The check_success function in the Python file which is located in the addons folder
structure will be called by the framework to check for the success of a tool run. The
Hydra tool is a simple example which uses a short regex to check if the tool was able to
extract credentials as seen in Listing 1

Since the return code is not enough this function receives the stdout, stderr and maybe
even extra content besides the return code of the tool run depending on how the Python
wrapper file of the tool is programmed.

4.6 Report generation
After conducting several tests on a device in the IoT Testbed, a detailed report summa-
rizing the findings can be generated. This report allows the identification and addressing
of any potential vulnerabilities effectively.

26

4.6. Report generation

1 def check_success(return_code, output_content_stdout, output_content_stderr,

output_content_extra):�→
2 # Regular expression to match lines indicating that valid passwords were

found�→
3 valid_password_pattern = re.compile(r'\d+ valid password(s)? found')

4

5 return bool(valid_password_pattern.search(output_content_stdout))

Listing 1: Check success of tool

4.6.1 Generating a Device Report
A device report can be generated with the following steps:

1. When starting from the landing page of the testbed a device for which the report
should be generated has to be selected by clicking onto it. Now a detail page about
the device is being shown.

2. Now the Download Report button has to be clicked to start the report generation
process. Now a different page is shown where all previously performed test that
have been linked to the device or did not have any device selected at all will be
shown in this page.

3. The tool executions have to be selected that should be included in the report. By
doing so, either all tests can be collected in one big report or different smaller PDFs
can be created to give the report on specific security sections of a device.

4. When all tests have been selected that should be included in the report the next
step is to click on Generate Report. The IoT Testbed will then compile the chosen
test results into a structured PDF document. An example of such a report can be
found in chapter 6.

The generated report consists of several key sections that provide insights into the tested
device and the outcomes of the various security assessments:

• Title Page: Provides an overview of the device, including essential identification
information.

• Index Page: Lists the included tests and serves as a navigational aid for reviewing
the report’s contents.

• Detailed Test Reports: Presents in-depth findings from the selected tests. The level
of detail and presentation style for each test is guided by the configuration of the
corresponding tool within the Testbed, particularly concerning the handling of test
outcomes.

27

4. IoT Framework Implementation

4.6.2 Handling of Test Outcomes
The report’s treatment of individual test results is based on the tool’s configuration
specified by some variables that can be found in the the wrapper file for the tool, notably
the SHOW_OUTPUT_ON_FAILURE setting:

• SHOW_OUTPUT_ON_FAILURE = True

– if addon offers <addon_name>.addon_failure.html as a template, then this
will be displayed in the report.

– else shows the normal output template for this addon

• SHOW_OUTPUT_ON_FAILURE = False

– omits this addon from the detailed log page

This allows for a dynamic way to include each tool differently in the report PDF,
depending on the success of the run.

28

CHAPTER 5
Extending the Framework

This chapter shows how to add more functionalities to the Testbed in the form of new
tools that can be either pre-existing or newly developed. Further it will dive into chained
tools in the form of pipelines, how to create, export or import them. As well as other
parts that can be changed or exchanged and how this process would look like.

5.1 Incorporating Alternative DNS/DHCP Services
While the IoT Testbed is configured to utilize Technitium as its default DNS/DHCP
service provider, due to its open-source nature [30], the flexibility to integrate alternative
DNS/DHCP services exists. This adaptability, however, comes with considerations,
primarily because some specific functions have to be written into a helper file to ensure a
functioning Testbed.

5.1.1 Implementing a New DNS Helper
To implement a different DNS/DHCP service, a new DNS helper file within the designated
directory has to be created: testbed/helper/dns/<dns_helper_file>.py. This file must
include the following essential methods tailored to interact with the new service:

• The function get_default_settings() is designed to provide a structured repre-
sentation of the default configuration parameters for two critical network services:
DNS (Domain Name System) and DHCP (Dynamic Host Configuration Protocol).
Upon invocation, this function returns a list containing two dictionaries, each cor-
responding to the configuration settings for DNS and DHCP services, respectively.
This configuration is necessary for all further functions.

• The login(settings: Dict[str, str]) -> None function is responsible for au-
thenticating the user to the DNS server via the Technitium API using specified

29

5. Extending the Framework

credentials in the get_default_settings() and subsequently updating the provided
settings dictionary with a secret token acquired during the authentication process.
This function embodies a critical component for communication with the DNS
server and is needed for subsequent operations requiring authentication, such as
modifications to DNS records, querying DNS logs, and in Technitium’s case, setting
the DHCP scope or deleting existing scopes. Since the IoT Testbed is implemented
to use Technitium as the choice of DNS and DHCP server and is offering an API to
talk to it, the new DNS server which should replace Technitium should also offer
API endpoints to request the needed information.

• The function list_all_dhcp_scopes(settings: Dict[str, str]) -> List[Dict] is
designed to retrieve a comprehensive list of Dynamic Host Configuration Protocol
(DHCP) scopes from a designated external API, leveraging a set of predefined
settings for authentication. This function illustrates a pragmatic application of
interfacing with network configuration APIs, facilitating the dynamic acquisition of
network scope data crucial for network management and configuration tasks.

• The function setup_dns(settings: Dict[str, str]) -> None plays an important
role in configuring the Domain Name System to ensure its operational readiness. In
the current state, this means receiving a valid authentication token and then using
the token to install the log apps of Technitium DNS, which is crucial for enabling
the persistent storage of DNS data.

• The last needed function is setup_dhcp(dns_settings: Dict[str, str],
dhcp_settings: Dict[str, str]) -> None and it is responsible for setting up
the DHCP. Currently, this function checks for a valid token, removes all existing
DHCP scopes, and creates a new scope that is needed to ensure the network is
working as intended.

To ensure seamless integration and functional parity with Technitium’s capabilities, when
implementing DNS/DHCP methods, it is important to ensure that they comply with the
selected service’s operational requirements and API specifications.

5.1.2 Integration Process

The integration process of an alternative DNS/DHCP service into the IoT Testbed
is facilitated through dynamic module importation and verification. This process is
demonstrated in Listing 2.

This code dynamically identifies and imports the newly created DNS helper module
based on the Testbed configuration. The check_dns_helper_ok function verifies the
compatibility and readiness of the helper module, ensuring that all necessary methods
are implemented correctly and operational.

30

5.2. Extending the IoT Testbed with Custom Tools

1 dns_settings['name'] = get_dns_helper_file(

2 os.path.join("testbed", "helper", "dns"))

3 module_name = "testbed.helper.dns." + str(dns_settings['name'])

4 dns_helper = importlib.import_module(module_name)

5 okay, mess = check_dns_helper_ok(dns_helper)

Listing 2: Load DNS Helper

Considerations and Recommendations

When integrating an alternative DNS/DHCP service, ensuring that the new service
aligns with the Testbed’s functionality is important. Although transitioning to a different
DNS/DHCP service within the IoT Testbed is feasible, it requires careful planning,
implementation, and validation. Some points that need extra checking might be:

• It is important that the new DNS server supports API requests so

– the Testbed can log in to the server
– the DNS queries can be requested to a specific IP
– the DHCP leases can be queried as well as the DHCP scopes.

• If DNS and DHCP get offered by a different server, the DHCP part needs a new
wrapper.

• It is essential that the new DNS server persists previously made requests so the
testbed can request them over the API.

5.2 Extending the IoT Testbed with Custom Tools
The following section will give an overview of what is needed to create a new tool and
expand the tool set of the IoT Testbed. First an implementation overview is given so
that new tool wrappers can be developed.

5.2.1 Implementing a New Tool
To ensure compatibility and operational integrity, a structured process is in place for
adding new tools to the IoT Testbed ecosystem. Here is a detailed guideline for integrating
a new tool, using Hydra as an example:

Tool Integration Structure

To integrate a new tool, such as Hydra, into the IoT Testbed, the directory structure
seen in Listing 3 should be established within the addons folder.

31

5. Extending the Framework

hydra

|-- hydra.py <- The Addon file, has to have the same name as addon folder

|-- templates

| |-- hydra_failure.html

| |-- hydra_stderr.html

| |-- hydra_stdout.html

| `-- hydra_dashboard.html

Listing 3: Addon folder structure

This structure separates the tool’s executable logic (hydra.py) from its output presentation
layer (the templates directory), promoting modularity and ease of maintenance.

Essential Components of a Tool Addon

A tool addon file, such as hydra.py, must define specific global variables and implement
key functions to ensure seamless integration and functionality within the Testbed. These
include:

• ADDON_NAME: Identifies the addon, typically set to the tool’s name or its
executable function within the system.

• SHOW_OUTPUT_ON_FAILURE

This variable determines the behavior of a tool on failure. Setting it to False means
that the tool will not generate a report in the PDF if it fails or does not find any
vulnerabilities. Setting it to True allows the addon to add its output to the report,
if a template is present that handles the failure output. Otherwise, the next variable
tells the system which output to use for true negative cases. This is described in
more detail in subsection 4.6.2.

• FAILURE_CHANNEL

This variable tells the IoT Testbed which channel to use on failure since some tools
might deliver the information on stdout, some on stderr, and some on a specified
output path which in our case is called extra. This variable can be one of the
following:

– stdout: normal stdout channel

– stderr: normal stderr channel

– extr: extra channel that can be specified in the tool Python file

32

5.2. Extending the IoT Testbed with Custom Tools

Key Functions for Tool Operation

The following functions describe the interface for integrating the operation of the IoT
Testbed addon and its integration within the Testbed:

• get_file_ext(filetype) This Python function in Listing 4 accepts a single

1 get_file_ext(filetype: str) -> str:

2 extensions = {"stdout":"txt", "stderr":"txt", "extra":"txt"}

3 return extensions[filetype]

Listing 4: Retrieve file extensions per addon

argument, filetype, which specifies the type of output file (e.g., stdout, stderr, or
extra). It then returns the corresponding file extension as a string, based on a
predefined dictionary mapping each output file type to its appropriate file extension.
By default, all file types are assigned a .txt extension, which is suitable for textual
data. However, this function can be easily adapted to accommodate specific file
formats unique to certain tools. For instance, the tcpdump tool generates output
files in the .pcap format, and this function can be tailored to return a .pcap extension
for output files generated by tcpdump, enhancing the usability and compatibility of
the captured data.

• get_options()
The get_options() function is used for customizing and configuring tools within the
IoT Testbed, providing a structured approach to specifying the default operational
parameters of a tool. It outlines the flags, arguments, and positional arguments
necessary for invoking the tool with its desired functionality. The significance of
this function lies in its ability to dynamically tailor tool execution to specific testing
scenarios, thereby enhancing the Testbed’s adaptability and efficiency.
The implementation of get_options() is designed to return a dictionary that encap-
sulates the default execution parameters for the tool. The options for the Hydra
tool are shown in Listing 5, which is divided into three sections.
To show an example, these three parts from the options are explained with the
example of Hydra[27] which can be seen in the following list.

– Flags: An array that may contain default flags to be used during tool execution.
This section allows for simple binary options that modify the tool’s behavior
without requiring additional data.

– Arguments: A dictionary mapping argument names to their values. This
structure supports more complex configurations, such as file paths or numerical
values, that influence the tool’s operation. In this example, three arguments

33

5. Extending the Framework

1 def get_options() -> Dict[str, Any]:

2 options = """{

3 "flags":[""],

4 "arguments":{

5 "L":"path_to_file(default=<addons/.../wordlist.txt>)",

6 "P":"path_to_file(default=<addons/.../wordlist.txt>)",

7 "t":"4"

8 },

9 "pos_arguments":{

10 "protocoltarget":

11 "protocol_to_attack(default=<ssh>)://ip_of_device"}

12 }"""

13 return options

Listing 5: Retrieve options per addon

are present. L and P are a username and a password file.
This follows a certain structure if there is the need to provide the user with
an interface to change this argument. If it is a fixed path, it is better to just
specify the path; however, in this example, it would be nice for the user to
upload a specific user/password file that fits the password specification for
a specific device, for example. The path_to_file tells the IoT Testbed that
a user can choose a path here, and this should be displayed as a file input
on the website. If the user does not specify a file that needs to be used, the
default value is being used specified by default=.

– Positional Arguments: These are attached to the end of the command and
offer the same variability that we saw in Arguments. In this example, we
have two keywords. One is protocol_to_attack which will be a text input on
the website, with the default value of ssh and the ip_of_device which gets
replaced with the actual ip of the device that is registered in the IoT Testbed.

In summary, the get_options() function exemplifies the modular and configurable
nature of the IoT Testbed, enabling the seamless integration of tools with diverse
operational requirements. Through this function, the Testbed allows users to
tailor tool execution to the specific needs of their security assessments, thereby
maximizing the effectiveness and precision of IoT device evaluations.
Moreover, the structured return value of get_options() facilitates the automatic
generation of user interfaces for tool configuration on the Testbed’s web platform.
This means that the options defined within the function can be utilized to build a
user interface, making tool configuration more user-friendly.
For the hydra example, the run page might look like Figure 5.1:

34

5.2. Extending the IoT Testbed with Custom Tools

Figure 5.1: Shows the run page for hydra on a device

• install_addon(package_manager)

The install_addon function is invoked when adding a new tool to the IoT Testbed.
Its primary objective is to automate the tool’s installation process, leveraging the
system’s package manager. This automation significantly simplifies the setup process
for new tools, ensuring that they are ready for use without manual intervention.
Listing 6 gives a closer look at how the function might be implemented.

1 def install_addon(package_manager: str) -> Tuple[int, str]:

2 ...

3 cmd = [package_manager, "install", "-y", ADDON_NAME]

4 subprocess.run(cmd, check=True)

5 ...

Listing 6: Shows the installation process

It is necessary for the install_addon function to be defined within the tool’s addon
file, regardless of whether the tool requires additional software to be installed or
not. This ensures consistency in the addon structure and facilitates potential future
installations.

The install_addon function is expected to return a tuple containing an integer and
a string. The integer represents the installation process’s success status (usually 0

35

5. Extending the Framework

for success), and the string provides a message or feedback about the installation
outcome: (0, ‘<some_message>‘).

• run(device_tool_info_key, device_tool_info, command, stdout_file,
stderr_file, extra_file)
The run function is central to tool operation within the IoT Testbed framework. It
facilitates the execution of diverse tools and the collection of their outputs. It is
invoked with several critical parameters, each serving a specific purpose in the tool
execution process:

– device_tool_info_key
The tool uses a unique identifier to store new findings or results related to
the device under test. For instance, a tool like Hydra, which specializes in
password attacks, might use this key to record vulnerable credentials.

– device_tool_info
This dictionary aggregates the outcomes from various tools, indexed by their
respective keys. It serves as a centralized repository for data gathered during
the Testbed’s analysis, facilitating cross-tool data utilization and enhancing
the depth of security assessments. This is especially useful for pipelines.

– command
The pre-constructed command that triggers the tool’s execution is dynamically
generated, often reflecting user-defined parameters or configurations specified
through the Testbed’s interface.

– extra_file, stderr_file, stdout_file
These parameters denote the file paths where the standard output, standard
error, and any additional output from the tool’s execution are to be stored.
This structured approach to output capture ensures comprehensive logging
and subsequent analysis.

The implementation of the ‘run‘ function typically involves executing the specified
command using system-level functions (e.g., ‘subprocess.Popen‘ in Python) and
redirecting the outputs to the designated files. This process captures the tool’s
direct outputs and allows for the monitoring of execution status and potential
errors.
Tools that augment the device_tool_info dictionary with new data must ensure
that this information is accurately returned at the function’s conclusion. This
return mechanism enables the persistent storage of tool outcomes, making the data
accessible in a pipeline for further analysis, reporting, or use by subsequent tools.
The run function might look like Listing 7.

• get_stdout(stdout) This function processes standard output (stdout) data from
tool execution. It formats the raw output into a structured form suitable for display
or further analysis. The function takes the stdout data as input and returns a data
structure (e.g., a dictionary or a list) representing the formatted output.

36

5.2. Extending the IoT Testbed with Custom Tools

1 def run(device_tool_info_key: str, device_tool_info: Dict[str, Any],

2 command: list, stdout_file: str, stderr_file: str,

3 extra_file: str = None) -> Tuple[int, Dict[str, Any]]:

4 with open(stdout_file, 'w') as stdout_f, open(stderr_file, 'w') as

stderr_f:�→
5 process = subprocess.Popen(command, stdout=stdout_f, stderr=stderr_f,

text=True)�→
6 process.communicate()

7 returncode = process.returncode

8

9 with open(stdout_file, "r") as f:

10 device_tool_info[device_tool_info_key.replace("

","_")]=get_ports_from_stdout(f.read())�→
11 return returncode, device_tool_info

Listing 7: Run an addon/tool

• get_stderr(stderr) Similar to get_stdout, this function processes standard error
(stderr) output from tool execution. It formats error messages or logs for easy
interpretation and display, ensuring that potential issues or important warnings
are not overlooked.

• get_stdextra(extra) This function provides a mechanism to process and format
additional types of output beyond standard output and error for tools that produce
them. This could include binary data, network captures, or any other form of
output that doesn’t fit the standard stdout or stderr streams.

• get_failure() This function is specifically designed to handle and format the
output in cases where the tool execution fails or when specific vulnerabilities are
not found. It ensures that failures are reported in a clear, actionable manner, aiding
in debugging and further analysis.

• get_html()
This function uses the data provided by the functions mentioned in the previous
four list points and renders an HTML page with the help of a Jinja template.

The development of Jinja templates is a critical step for visualization and analysis of tool
outputs within the IoT Testbed. These templates serve as the bridge between the raw
data produced by security tools and the structured, readable reports accessible to users.
Understanding the necessity and structure of these templates is essential for effectively
integrating new tools into the Testbed.

The creation of Jinja templates follows a specific structure, ensuring that the tool’s
outputs are appropriately captured and presented:

37

5. Extending the Framework

• <tool_name>_stdout.html
This template is needed for incorporating the standard output (stdout) of a tool’s
execution into the Testbed’s user interface and downloadable reports. Its presence
is mandatory because stdout often contains the primary results or data produced
by the tool.

• <tool_name>_stderr.html
This template is designed to render the standard error (stderr) output, which may
contain error messages, warnings, or additional information not captured in stdout.

• <tool_name>_failure.html
This optional template is used to display tool outputs when the execution fails or
does not achieve its expected objectives. If the tool is set up with
SHOW_OUTPUT_ON_FAILURE set to True and this template exists, it will be
utilized to present failure-related outputs. Otherwise, the Testbed defaults to using
the stderr content.

• <tool_name>_dashboard.html
This template is required when a tool is marked with the Has Dashboard flag. It
enables the creation of a dedicated dashboard page for the tool within the IoT
Testbed.

The customization potential offered by Jinja templates allows both tool developers
and Testbed administrators to tailor the presentation of tool outputs to meet specific
analytical needs or user preferences. This flexibility enhances the user experience, making
the analysis of complex tool outputs more accessible.

5.2.2 Incorporating a Tool into the IoT Testbed
After writing a new tool wrapper or downloading one, you can add it to the IoT Testbed
by performing one additional step. Before proceeding to the remaining steps on the
website, ensure that the tool wrapper and jinja files are named correctly and in their
corresponding places.

To add a new tool, go to the IoT Testbed web interface and navigate to Tools -> Add
new Tool. You will see a form similar to the one shown in Figure 5.2.

• Select the addon name from the list. If the tool is not listed, it indicates a problem
with the file or directory structure. Meaning that the names of the folder and/or
files does not correspond to the guidelines.

• Specify the command.

• Verify the options, which should be accurately predefined in the addon file.

• Input an optional commentary.

38

5.3. Extending the IoT Testbed with pipelines

Figure 5.2: Shows the form to add a new tool

• Check the "Needs Device" box if the tool requires a device for operation. Without
an associated device, the tool will not execute.

• Check "Has Dashboard" if the tool includes a <tool_name>_dashboard.html file,
which can be added to the IoT Testbed’s navigation bar.

Once these steps have been completed, click on ADD to register the tool on the Tools
index page. The tool is then available for penetration testing on devices or for inclusion
in a pipeline.

5.3 Extending the IoT Testbed with pipelines
Pipelines are a feature of the IoT Testbed that allows you to automate and streamline
the execution of multiple security tools against IoT devices. By chaining together a
series of tools, users can conduct security assessments efficiently without needing manual
intervention. This feature is particularly helpful for time-consuming tasks, allowing you
to initiate a sequence of operations and revisit the results later.

To create a pipeline, the following steps are necessary:

1. On the IoT Testbed website, clicking on Pipelines in the navigation bar brings us
to the needed form.

2. By clicking on Create new Pipeline the process gets started.

3. The appearing form has to be filled out:

39

5. Extending the Framework

• Add a descriptive name for the pipeline.
• Add a brief comment that describes the pipeline.
• Add a Python file containing all the necessary functions for the pipeline.

4. By clicking on Create Pipeline a pipeline entry will be created in the Testbed.

5. On the pipeline index view, select the just created pipeline and steps can be added
by clicking on Add new step.

• Assign a step number. Step numbers have to be consecutive! If a pipeline
contains steps that do not form a consecutive order, then the system will try
to create this consecutive order.

• The tool that is needed for this step has to be selected.
• Now in the Function input field, a function name has to be added, for example

check_port. This function, however, has to exist in the function file, which
was uploaded earlier. This function has to return true, otherwise this step
will not run. If Hydra wants to run an attack on a specific port, a preliminary
check could already be done here to see if the port is even open. An example
of how this could look like is as follows:

• Finalize the process by clicking on Add step

The pipeline file dictates the pipeline’s flow through conditional checks performed by
its functions. These functions receive three key pieces of information:

• device: The target device of the pipeline execution.

• step: The specific step within the pipeline being executed.

• pipeline_log: An object allowing for the reading from and writing to the pipeline’s
log, facilitating data exchange and condition checks across steps.

Functions within this file must return either True or False, determining whether subse-
quent steps should execute. For instance, a function like check_ssh as seen in Listing 8,
examines the device’s tool output for open SSH ports, enabling subsequent SSH-related
operations only if the condition is met.

Figure 5.3 depicts the pipeline in question and its first step is to start with Nmap to
retrieve open ports. This step is required for mapping the device’s network interface and
identifying potential entry points for penetration. Once the Nmap scan is completed, the
pipeline is designed to execute Hydra SSH and Hydra Postgres in parallel, depending on
the results of preliminary checks - check_ssh and check_postgres, respectively. These
functions evaluate the feasibility of the attacks based on the Nmap results, ensuring
that the subsequent steps are both relevant and likely to yield actionable insights. The

40

5.3. Extending the IoT Testbed with pipelines

1 def check_ssh(device, step, pipeline_log):

2 data = json.loads(device.tool_info)

3

4 for result in data.get("nmap", []):

5 if result.get("service") == "ssh" and result.get("state") == "open":

6 return True, ""

7 return False, "Service is not available or not open!"

Listing 8: Checks if the SSH service is reachable

Figure 5.3: Shows an example pipeline with nmap and hydra

Hydra SSH and Hydra Postgres steps are executed independently of each other since
they address different attack vectors (SSH and PostgreSQL services).

In this particular case, the check_ssh function validates the presence and accessibility of
an SSH service, returning True. Thus, the Hydra SSH step is activated, targeting the
device’s SSH interface for brute-forcing passwords. Conversely, check_postgres returns
False, indicating the absence of an open PostgreSQL service or the service’s inaccessibility.
This result prevents the execution of Hydra Postgres, optimizing the pipeline’s efficiency
by bypassing irrelevant or unfeasible tasks.

41

5. Extending the Framework

5.3.1 Import/Export a pipeline
The IoT Testbed emphasizes the robust execution of security assessments and facilitates
collaborative cybersecurity research. The collaborative aspect is supported by the ability
to import and export pipelines, enabling the distribution and replication of successful
security assessment workflows. This user-friendly feature allows users to share custom-
built pipelines and contribute to a collective resource pool that benefits the broader
cybersecurity community.

Exporting a pipeline is a process that packages the pipeline’s configuration and
associated functions into a portable format. To export a pipeline the following steps are
necessary:

1. Access the list of available pipelines in the IoT Testbed.

2. Identify and select the pipeline you wish to export. This action will give you a
detailed view of the selected pipeline.

3. Look for and select the export pipeline option. This will initiate the export process,
compiling all relevant pipeline information into a single JSON file. This file includes:

• The pipeline’s configuration details that are stored within the Testbed’s
database.

• The Python function file associated with the pipeline, encoded in base64 within
the JSON file. This encoding ensures that the Python file is encapsulated in a
web-safe format that can be easily decoded upon import.

Importing a pipeline allows users to integrate externally sourced pipelines into their
Testbed environment. To add a pipeline the following steps have to be followed:

1. Return to the list of all pipelines.

2. Use the interface to select a JSON file that contains the exported pipeline data.
This file should encapsulate all necessary configurations and the base64-encoded
Python file.

3. Initiate the import process by confirming the file selection. The Testbed will parse
the JSON file, reconstruct the pipeline’s database entries, and decode the Python
file to restore the original functionality.

It’s important to note that the import process checks for the existence of the required
tools within the Testbed. If any tools referenced by the pipeline are missing, users need
to add these tools to ensure the pipeline functions as intended.

42

CHAPTER 6
Evaluation

This chapter describes the evaluation process and the results obtained from a series of
tests conducted on 14 IoT devices, including a Raspberry Pi with given vulnerabilities.
A complete list of the devices that are being used can be found in Table 6.1. All devices
in this list were connected via WLAN to the router. Except for the Raspberry, which
was connected via a RJ45 cable to the router and was as such, besides the Testbed, the
only device that was connect with a cable.
Before delving into the specifics of the test devices, lets revisit our general structure
Figure 4.1 and the specifications of our test environment will be shown now. We used a
CH7465MT-AT model as the router/modem with CH7465LG-NCIP-6.15.32p2TM-GA-
NOSH as the software version. The Testbed with its container then runs on a mini-pc
which is connected to the router (IP:192.168.0.1), its specifications can be seen in the
following list.

• Model: HP EliteDesk 800 G3
DM

• Processor: i5-6500

• RAM: 16 GB

• Storage: 512 GB SSD

• OS: Kali Linux 2023.3

• Python: v3.10

• IP: 192.168.0.2
All test devices, the Testbed and the PC to access the website have to be in the same
network and in our case they all belonged to this network: 192.168.0.0/24 where the
router has the first address: 192.168.0.1. Then follows the Testbed: 192.168.0.2 and all

43

6. Evaluation

Device ID Device Type Vendor
IG301S Smart Garden Planting station Tuya Smart Inc.
Pawaboo du7l-w Smart Cat Feeder Tuya Smart Inc.
LF-C1t Smart Cam Tuya Smart Inc.
Bakibo smart bulb Smart Bulb Tuya Smart Inc.
Hutakuze smart bulb Smart Bulb Tuya Smart Inc.
Fitop smart bulb Smart Bulb Tuya Smart Inc.
FireTV Stick FireTV Amazon Technologies Inc.
Echo Show Amazon Echo Amazon Technologies Inc.
Echo Dot 2 Gen Amazon Echo Amazon Technologies Inc.
9C7613D0FFC4-Ring Bell, 5at1s2 Ring Bell Ring LLC
Hisense H49MEC3050 TV CyberTan Technology Inc.
Yeedi vac hybrid Smart Vacuum FN-Link Technology Limited
Steamlink-1003 Steamlink Valve Corporation
Raspberry Pi 2 Raspberry Pi Raspberry Pi Foundation

Table 6.1: Device test set

new additional devices receive their address by DHCP (Important: It is crucial that no
other DHCP-Server is active in this network) which also gives them the Testbed as their
standard gateway as well as the DNS server which again is the Testbed.

To summarize the network settings for the Raspberry Pi looked like this:

• IPv4: 192.168.0.152

• Netmask: 255.255.255.0

• DNS Server: 192.168.0.2

• Default Gateway: 192.168.0.2

And the network settings for the testbed are set up like this:

• IPv4: 192.168.0.2

• Netmask: 255.255.255.0

• DNS Server: 8.8.8.8

• Default Gateway: 192.168.0.1

Before using the Testbed a couple of steps are necessary to ensure that DNS, DHCP and
Standard Gateway are set up correctly.

44

6.1. Initial Setup Process

6.1 Initial Setup Process
A preliminary setup process is required to start the DNS and DHCP services, which can
be accessed by clicking the "First-time setup for DNS!" and the corresponding DHCP
button in the Testbed’s settings section. This setup process involves several critical steps:

For DNS:

1. General Configuration: The process begins by fetching DNS settings from the
database.

2. DNS Helper File Location: It identifies the location of the DNS helper file,
which is expected at testbed/helper/dns/<dns_helper_file>.py.

3. Technitium Token Retrieval: It secures a communication token from Technitium.

4. Log App Installation in Technitium: It ensures that DNS requests are logged
and stored within a dedicated database for subsequent analysis.

For DHCP:

1. General Configuration Retrieval: Similar to DNS, it begins by fetching the
relevant settings from the database.

2. Helper File Identification: It locates the DNS helper file as outlined for the
DNS setup.

3. Token Acquisition: It obtains a token for communication with Technitium, which
is crucial for both DNS and DHCP setups.

4. Existing DHCP Scope Removal: It clears any pre-existing DHCP scope in
Technitium to ensure a fresh configuration baseline.

5. New DHCP Scope Setup: It configures a new DHCP scope based on the
specifications detailed in the settings, facilitated by the helper file.

This initial setup ensures that the IoT Testbed is correctly configured to manage network
traffic, providing DNS and DHCP services while capturing detailed communication
data for analysis. This process not only enhances the Testbed’s network management
capabilities but also solidifies its role as a crucial tool for security analysis and research
within IoT ecosystems.
The important setup for the gateway however is explained in section 4.2 but the short
set up process will be listed here:

1. Go to the settings page

45

6. Evaluation

2. Change the setup and cleanup line according to your operating system (If you are
using Kali Linux no change should be needed)

3. Click on Save

4. Click on Set Standard Gateway

Now, the Testbed is ready to evaluate on the given test set of devices, they were chosen
to represent a household which employs a couple of different IoT devices. First, the
devices have been added to the network as seen in Figure 4.1 through either LAN or
WLAN. This has been done one device after the other ensuring that the devices enter
the Testbed in a controlled way so the automatically assigned data to the devices can be
checked. Now the next step in the lifecycle of a device is to check the traffic it produces.

6.2 Traffic analysis
Upon integrating a device into the Testbed, the crucial process of information acqui-
sition commences immediately. The first step involves extracting vital data from the
DNS/DHCP server to monitor the timelines for adding devices. This is followed by
cross-checking the MAC address list provided by the IEEE website to determine the
device vendor and add their details to the database.

This initial reconnaissance phase is important in gathering information about a device
even before the first traffic arrives. During the process of adding 13 test devices and
verifying the MAC address vendor assignment, we made the following discovery. Six out
of the 13 devices had Tuya Smart Inc. as their network card vendor, despite originating
from different vendors. This information is presented in Table 6.1, and the mac vendor
distribution is visualized in Figure 6.1.

Currently, Technitium DNS actively captures DNS queries and stores them in its database.
A summary of these queries can be extracted on the respective device’s detailed page.
Moreover, you can download a comprehensive list of DNS requests directly from the
Technitium DNS web user interface or the device’s detail page.

We analyzed the DNS request records to gather more information about the devices in
the Testbed. Our analysis revealed that two devices in our test set did not accept the
given DNS but instead used their own.

These two smart appliances are the IG301S Smart Garden and the pawaboo du7l-w smart
Cat Feeder. Upon analyzing their DNS logs, we found that both devices do not provide
any information. This makes it difficult to analyze if they are leaking any information
about the device or the user. However, it is important to note that some devices may
have a hardcoded DNS and do not use the offer they receive from the DHCP as their
DNS. To address this issue, we developed a tool wrapper for tcpdump.

We used tcpdump to record the traffic that runs through the Testbed. After analyzing
the traffic of the two previous devices, we found that all traffic going out of them is

46

6.2. Traffic analysis

Figure 6.1: Shows the distribution of the vendors

encrypted and goes to two Amazon AWS addresses: 3.124.225.12 and 3.121.131.36.
Further the traffic going out to these addresses did not show up as DNS traffic in the
tcpdump.

While analyzing the traffic of our Raspberry Pi test device, we discovered that the capacity
of tcpdump to document comprehensive network traffic is limited by the Testbed’s inability
to function as the network’s edge router. To document traffic, we employed tcpdump
within the Testbed, viewed the traffic in Wireshark, and applied the filter (ip.src ==
192.168.0.155) || (ip.dst == 192.168.0.155). This allowed us to see only the traffic
going to and coming from the test Raspberry Pi device. During an ICMP ping test, the
outgoing request and the incoming reply are both captured, illustrating the bidirectional
traffic flow as seen on the test device itself. However, when we inspected the equivalent
traffic captured from the Testbed’s perspective, we found that the incoming replies were
not captured by the Testbed.

This discrepancy highlights the inherent limitation of the Testbed’s operational design
as a standard gateway rather than a fully-fledged routing entity. Although it adeptly
captures outbound traffic from the test device, inbound traffic is usually routed directly
to the test device by the network’s primary router, bypassing the Testbed.

In order to capture all of a device’s network traffic, it is necessary to place the traffic
capture mechanism at the edge routing device of the network. This placement ensures
that all incoming and outgoing traffic is routed through the capturing device, which helps
to overcome any limitations and expand the scope of traffic analysis.

We have found that it may suffice to monitor the requests to identify their destination
and the information they may be leaking for our current use case. After analyzing the

47

6. Evaluation

Figure 6.2: Shows the traffic of the test raspberrypi

Figure 6.3: Shows the traffic of the test raspberrypi seen from the Testbed

Device Addresses
IG301S Smart Garden AmazonAWS(3.124.225.12,3.121.131.36)
Pawaboo du7l-w AmazonAWS(3.7.242.33,18.195.249.137)
Bakibo smart bulb AmazonAWS(52.58.249.45,3.121.131.36,18.185.182.159)
HUTAKUZE smart bulb AmazonAWS(3.121.131.36,18.185.218.106,18.185.182.159)

Table 6.2: Garden and Feeder most contacted addresses

traffic using tcpdump on the Testbed and Technitium DNS logs, we discovered that 11
of our 13 test devices were using the provided DNS server, at least initially. One device,
the Fitop Alexa smart bulb, initially used the provided DNS server but later switched to
using "h3.iot-dns.com" for further communication.

To give an overview of the addresses that have been contacted by the smart garden and
the cat feeding station the following table has been created. Two light bulbs in the test
set communicated with the same addresses which can be seen in the following Table 6.2.

Out of the 13 devices, the Yeedi vac hybrid had very few requests and only contacted the
address mq-ww.ecouser.net. It did not leak any information about the device or its user
in the traffic. However, using tcpdump on the edge router and gathering the incoming
data for this device might provide more information about the communication.

Echo Dot, Echo Show, and FireTV stick contacted mainly Amazon addresses, but they
did not leak any information about the device or its user in the traffic. The smart camera
LF-C1t contacted AmazonAWS and also Google under 35.207.11.126, but it did not leak
any information about the device or its user in the traffic.

For our remaining three devices, while searching for keywords in the traffic to find out if
they leak any information about what or who the device is and if they leak information
about the owner we found out that indeed they do. The following three devices either

48

6.2. Traffic analysis

leaked information in an endpoint they contacted or had the information right in the
package.

The Hisense TV contacted hisensetracker.fxmconnect.com and leaked that the device is
at least from Hisense. However, since Hisense produces a wide variety of devices, it is
not possible to know for sure that it is a Hisense TV just from this address.

Furthermore, we found that the Steamlink contacted the endpoint
/steamlink/06_2015/public_builds.txt. This gave us information that the traffic is coming
from a Steamlink device and the build is 06_2015, which might be vulnerable.

The Ring Bell also revealed its name in the traffic, specifically in the packages. It can be
found that it is a Ring Chime but it is stated that it is one from the second generation.
Further, its traffic also leaked its MAC address in the traffic.

Lastly, the Raspberry Pi made some DNS requests, one of them went for
raspbian.raspberrypi.com. This however only says that the device making the request
runs Raspbian on it, but it is not a give away that it is a Raspberry Pi.

To summarize, some devices had encrypted traffic, making it challenging to analyze for
leaked information. However, we found the vendors’ names for three devices, and for two
devices, we found the name and even a build number in the traffic. We also searched the
traffic for leaked credentials, but we did not find any mention of the user’s email address.

This means that for our RQ1, we found that by not using machine learning to classify
devices and just using the traffic and analyzing it, we were able to identify two out of 13
devices by their model and brand (Steamlink, Ring), one of those remaining 11 devices
gave only the brand name (Hisense) giving us a success rate of 15.38% for a perfect guess
and 23.07% only to guess the brand. These rates, compared to the machine learning rates
are bad, and it shows that the machine learning approach gives more promising results
since it relies on more factors than just plain name leaked in the traffic. Machine Learning
solutions, as shown in the related work chapter 2 specifically in Table 2.2, yields a
successful guess rate of around 95.82% by not only checking for brand or model name
in the traffic but instead the model gets trained on four-tuples consisting of source and
desination IP and port numbers from SYN to FIN. Further each session gets represented
as a vector of features of the network, transport and application layers [14].

A quick summary of the devices can be found in Table 6.3. The column labeled Ping
indicates whether a device is pingable and responds to a ping. The column labeled DNS
indicates whether the device used the given DNS, which in our case is the Testbed. The
column labeled Leaking describes whether a device leaked information about itself or its
vendor. Lastly, the column labeled URLs provides a quick overview of the information
that was leaked or mainly contacted by the device.

49

6. Evaluation
D

evice
ID

D
evice

Type
IP

M
A

C
Vendor

H
isense

H
49M

EC
3050

T
V

192.168.0.168
C

8-3D
-D

4-C
5-ED

-A
8

C
yberTan

Technology
Inc.

Steam
link-37B3

Steam
link

192.168.0.165
E0-31-9E-2E-01-22

Valve
C

orporation
IG

301S
sm

art
garden

Planting
station

192.168.0.161
50-8B-B9-91-65-61

Tuya
Sm

art
Inc.

Pawaboo
du7l-w

Sm
art

C
at

Feeder
192.168.0.160

10-D
5-61-84-A

0-D
4

Tuya
Sm

art
Inc.

Echo
D

ot
2

G
en

A
m

azon
Echo

192.168.0.157
68-37-E9-B5-89-54

A
m

azon
Technologies

Inc.
H

utakuze
sm

art
bulb

Sm
art

Bulb
192.168.0.156

7C
-F6-66-6D

-56-C
E

Tuya
Sm

art
Inc.

Fitop
sm

art
bulb

Sm
art

Bulb
192.168.0.155

7C
-F6-66-6D

-47-C
E

Tuya
Sm

art
Inc.

Yeedivac
hybrid

Sm
art

Vacuum
192.168.0.154

2C
-D

2-6B-79-9A
-3A

FN
-Link

Technology
Lim

ited
Bakibo

sm
art

bulb
Sm

art
Bulb

192.168.0.153
10-D

5-61-A
5-FB-2A

Tuya
Sm

art
Inc.

R
ing

Bell,5at1s2
R

ing
Bell

192.168.0.174
9C

-76-13-D
0-FF-C

4
R

ing
LLC

LF-C
1t

Sm
art

C
am

192.168.0.175
84-E3-42-3B-F9-C

D
Tuya

Sm
art

Inc.
FireT

V
Stick

FireT
V

192.186.0.179
80-0C

-F9-C
7-25-10

A
m

azon
Technologies

Inc.
Echo

Show
A

m
azon

Echo
192.186.0.180

70-70-A
A

-8C
-F2-C

0
A

m
azon

Technologies
Inc.

R
aspberry

Pi
R

PiM
odel2

V
1.1

192.186.0.152
B8-27-EB-B1-BA

-56
R

aspberry
PiFdn.

D
evice

ID
Ping

D
N

S
Leaking

U
rls

H
isense

H
49M

EC
3050

Yes
Yes

N
o

hisensetracker.fxm
connect.com

Steam
link-37B3

Yes
Yes

Yes
/steam

link/06_
2015/public_

builds.txt
IG

301S
sm

art
garden

Yes
N

o
N

o
Encrypted,A

m
azonAW

S
6.2

Pawaboo
du7l-w

Yes
N

o
N

o
Encrypted,A

m
azonAW

S
6.2

Echo
D

ot
2

G
en

N
o

Yes
N

o
M

ultiple
H

utakuze
sm

art
bulb

Yes
Yes

N
o

Encrypted,A
m

azonAW
S

6.2
Fitop

sm
art

bulb
Yes

Yes
N

o
A

fter
som

e
tim

e
only

used
h3.iot-dns.com

Yeedivac
hybrid

Yes
Yes

N
o

2x:
m

q-w
w

.ecouser.net
Bakibo

sm
art

bulb
Yes

Yes
N

o
Encrypted,A

m
azonAW

S
6.2

R
ing

Bell,5at1s2
Yes

Yes
yes/no

M
A

C
A

ddress
in

package,exposes
ring

chim
e

but
not

second
gen

LF-C
1t

Yes
Yes

N
o

G
oogle

35.207.11.126
and

A
m

azonAW
S

FireT
V

Stick
Yes

Yes
N

o
A

m
azon

traffi
c

Echo
Show

Yes
Yes

N
o

A
m

azon
traffi

c
R

aspberry
Pi

Yes
Yes

Yes
raspbian.raspberrypi.com

Table
6.3:

Fulltest
device

list

50

6.3. Tool execution

Device ID Device Type Vendor Ports
Hisense H49MEC3050 TV CyberTan Technology Inc. -
Steam link-37B3 Steamlink Valve Corporation -
IG301S smart garden Planting station Tuya Smart Inc. -
Pawaboo du7l-w Smart Cat Feeder Tuya Smart Inc. -
Echo Dot 2 Gen Amazon Echo Amazon Technologies Inc. 8888
Hutakuze smart bulb Smart Bulb Tuya Smart Inc. -
Fitop smart bulb Smart Bulb Tuya Smart Inc. -
Yeedi vac hybrid Smart Vacuum FN-Link Technology Limited 8888
Bakibo smart bulb Smart Bulb Tuya Smart Inc. -
Ring Bell, 5at1s2 Ring Bell Ring LLC -
LF-C1t Smart Cam Tuya Smart Inc. -
FireTV Stick FireTV Amazon Technologies Inc. -
Echo Show Amazon Echo Amazon Technologies Inc. 8009,9
Raspberry pi 3 Raspberry pi Raspberry Pi Fdn. 22,5432

Table 6.4: Ports for each device

6.3 Tool execution
To start with the tool execution, we created the first pipeline to reveal any obstacles.
We started by writing a wrapper for the NMap tool. NMap allows us to quickly scan a
device for open ports, which might reveal an attack vector. However, after using this
tool on our test device set, we found that none of our test devices offered a port that
could be attacked with a simple password brute force attack. The open ports of each
device can be seen in Table 6.4.

Unfortunately, our test devices, as seen in Table 6.4 offer only three ports in total and
we assumed that services are being used with their standard ports:

• 8888: This port is often used to access web services. In the context of IoT, devices
might use it to receive commands or send data to a controlling app or service.

• 8009: This port is commonly associated with the Apache JServ Protocol (AJP).
AJP is used for server-to-server communications, like between an application server
and an Apache web server.

• 9: Traditionally known as the Discard Protocol, it’s used for debugging and network
performance testing, essentially acting as a sinkhole for sending data that will be
discarded.

Our Raspberry, however, gives us better control for this test since we can set up the
services and use password/username credentials as we like for each one of those services.

When running NMap on the raspberry pi, we get the output as seen in Listing 9.

51

6. Evaluation

Starting Nmap 7.94SVN (https://nmap.org) at 2024-03-08 15:59 CET

Nmap scan report for 192.168.0.155

Host is up (0.0021s latency).

Not shown: 98 closed tcp ports (reset)

PORT STATE SERVICE

22/tcp open ssh

5432/tcp open postgresql

MAC Address: B8:27:EB:B1:BA:56 (Raspberry Pi Foundation)

Nmap done: 1 IP address (1 host up) scanned in 0.52 seconds

Listing 9: Output of Nmap

We have identified that our Raspberry Pi has two open services: SSH on port 22 and
PostgreSQL on port 5432. The next step would be to use a tool called Hydra to attack
these open services. However, if a tool does not have an open port/service, there is no
need to run the following attack after the Nmap probe, as the port would not be open
anyway.

We also noticed that it is important for a tool to have the ability to save data in any
form to the device’s information, so that the next tool or a tool further down the pipeline
could look back at previous steps or tools to retrieve their information and use them for
the next step/attack.

In our case, Hydra is the tool in the pipeline that checks if a device has an open port
and gets attacked in the pipeline. This is why devices have a field in the database called
"tool_info", and after the Nmap run, this dictionary will look like the Listing 10.

A possible pipeline setup is illustrated in Figure 5.3. Here, Nmap provides information
on open services, and subsequently, the Testbed utilizes a brute force attack to identify
login credentials for these services.

However, before running any step, such as the hydra step after the Nmap probe, a
checking procedure was required. We decided that each pipeline should have its own
Python file where the pipeline developer can add methods that will return either True or
False to determine if a step should be executed or not.

In the case of the Raspberry Pi, as it has two open ports, an attack against Post-
gresql will look like this: hydra -L addons/hydra/wordlists/iot_wordlist.txt -P ad-
dons/hydra/wordlists/iot_wordlist.txt -t 4 postgres://192.168.0.155.

As a result of Hydra’s execution, credentials for the Postgresql service were successfully
identified, which can be seen in the output of hydra in Listing 11.

Analogously, the penetration test conducted on the SSH service yielded comparable
outcomes, effectively uncovering valid access credentials.

52

6.3. Tool execution

1 {

2 "nmap": [

3 {

4 "port": "22",

5 "state": "open",

6 "service": "ssh"

7 },

8 {

9 "port": "5432",

10 "state": "open",

11 "service": "postgresql"

12 }

13],

14 }

Listing 10: NMap tool info

Hydra v9.5 (c) 2023 by van Hauser/THC & David Maciejak -

Please do not use in military or secret service organizations, or for

illegal�→
purposes (this is non-binding, these *** ignore laws and ethics anyway).

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2024-03-08

16:05:11�→
[DATA] max 4 tasks per 1 server, overall 4 tasks, 81 login tries (l:9/p:9),

~21 tries per task

[DATA] attacking postgres://192.168.0.155:5432/

[5432][postgres] host: 192.168.0.155 login: pi password: raspberry

1 of 1 target successfully completed, 1 valid password found

Hydra (https://github.com/vanhauser-thc/thc-hydra)

finished at 2024-03-08 16:05:15

Listing 11: Hydra Postgres output

The hydra ssh process (hydra -L addons/hydra/wordlists/iot_wordlist.txt
-P addons/hydra/wordlists/iot_wordlist.txt -t 4 postgres://192.168.0.155) returned with
the the output seen in Listing 12.

This data is systematically collated into a dictionary structure, which is subsequently
persisted within the database for potential utilization across additional add-ons, an
example of this can be seen in Listing 13.

53

6. Evaluation

Hydra v9.5 (c) 2023 by van Hauser/THC & David Maciejak -

Please do not use in military or secret service organizations, or for

illegal�→
purposes (this is non-binding, these *** ignore laws and ethics anyway).

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2024-03-08

16:05:11�→
[DATA] max 4 tasks per 1 server, overall 4 tasks, 81 login tries (l:9/p:9),

~21 tries per task

[DATA] attacking ssh://192.168.0.155:22/

[22][ssh] host: 192.168.0.155 login: pi password: raspberrz

[STATUS] 79.00 tries/min, 79 tries in 00:01h, 2 to do in 00:01h, 4 active

1 of 1 target successfully completed, 1 valid password found

Hydra (https://github.com/vanhauser-thc/thc-hydra)

finished at 2024-03-08 16:06:14

Listing 12: Hydra SSH output

Currently, in the Testbed, pipelines from tools are available but require a specific Python
file to run checks between tasks and determine whether specific steps are necessary or
not. Additionally, a dictionary is necessary to store and retain data found by tools, which
can then be utilized by other tools.

By doing so, we answered our RQ2 by successfully creating a modular framework that
allows us to easily extend the framework capabilities by adding new tools; each tool then
brings its functions and contributes to the device results dictionary, which information
is then shared between other tools. Further chaining tools together by using the result
dictionary and the pipeline functions makes an attack workflow possible and allows for
an automated vulnerability check of a device. In our test environment, we used the
Raspberry Pi that exposed two services with weak credentials, and both credentials sets
for the SSH and PostgreSQL services were found.

Before a test device finishes its lifecycle in the Testbed, a report is now generated to
collect the information about the tools that have been running against a test device and,
if possible, classify if a vulnerability has been found by a tool or if a device is secure
against the attack of a specific tool.

6.4 Automatic classification and dynamic reporting
To address the issue of automatically interpreting the results, we initially used a simple
approach of parsing the return code for each tool. However, we soon realized that relying
solely on the return code was not enough to determine the success of a tool. For instance,
a hydra run that does not find any passwords or a nmap run that does not find any

54

6.4. Automatic classification and dynamic reporting

1 {

2 "nmap": [

3 {

4 "port": "22",

5 "state": "open",

6 "service": "ssh"

7 },

8 {

9 "port": "5432",

10 "state": "open",

11 "service": "postgresql"

12 }

13],

14 "hydra_postgres": [

15 {

16 "port": "5432",

17 "service": "postgres",

18 "host": "192.168.0.155",

19 "login": "pi",

20 "password": "raspberry"

21 }

22],

23 "hydra_shh": [

24 {

25 "port": "22",

26 "service": "ssh",

27 "host": "192.168.0.155",

28 "login": "pi",

29 "password": "raspberrz"

30 }

31]

32 }

Listing 13: Tool_info json with NMap and Hydra information

open ports can return a 0, indicating that the task ran successfully but providing no
information about the status of the task.

Therefore, we added a function to each addon that interprets the results, utilizing regex
checking for the presence of a string in most cases, while allowing for more complex
checks where necessary. If a tool does not provide data that can be easily categorized as
success or failure, the user can manually set the status of the tool run. To streamline this
process and present the information in a clear and user-friendly manner, we developed

55

6. Evaluation

a jinja-driven solution. This approach enables the customization of data presentation,
allowing the user to view the information in a format that is both accessible and visually
appealing. For instance, in the case of the test Raspberry Pi device, the output from the
Nmap scan and the retrieved credentials are organized in a table, as shown in Figure 6.4.
This method enhances the readability of the data while retaining the option for users
to download the raw output for further analysis. The use of a tabular presentation in
this particular instance is effective in delivering a concise and organized view of the data.
Additionally, the implementation of the project to this thesis allows for the results to be
compiled into a downloadable PDF document using the same HTML Jinja templates that
are used to show the results on the web page. This flexibility ensures that the Testbed
can accommodate divergent presentation styles with simple modifications to the Jinja
template if needed.

The results of each individual test are thoroughly documented in the logs, and the Jinja
templates elegantly display these results. However, this segment focuses on an aggregate
examination of results, which has been explained in the implementation section of this
thesis. Let us briefly examine the logs index, illustrated in Figure 6.5. This interface
catalogs each execution of a tool or pipeline, presenting essential information at a glance.
Entries highlighted in orange indicate logs that have not yet been reviewed or have
undergone recent changes.

When you select a pipeline log, you’ll be able to see the status of each step involved in
the process. Additionally, if you access a tool’s log from either the pipeline log or the
index view, you’ll be able to view detailed information related to that specific execution.

Furthermore, the detailed view of each device - such as the Raspberry Pi test device
shown here - consolidates all relevant logs, making it easier for you to access and review
them from a centralized interface.

Once you engage the "Download Report" feature, a comprehensive report will be generated.
This report will encapsulate all the findings and analyses in a structured format. For
instance, in the case of Raspberry Pi, the report will look like this example attached
here.

56

Device Overview

Device Name testpi

Vendor Raspberry Pi Foundation(B827EB)

ID B8-27-EB-B1-BA-56

Discovered Nov. 26, 2023, 5:29 p.m.

Last Seen March 8, 2024, 3:18 p.m.

Updated Feb. 9, 2024, 2 p.m.

Hardware Address B8-27-EB-B1-BA-56

IP Address 192.168.0.155

Host Name testerpi

Comments raspberry pi

Page 1 of 4

Selected Logs
ID Name Result

277 hydra shh Vulnerable

276 hydra postgres Vulnerable

275 nmap Vulnerable

Page 2 of 4

Log Entry(277): hydra shh

Extracted Credentials

Port Service Host Login Password

22 ssh 192.168.0.155 pi raspberrz

Log Entry(276): hydra postgres

Extracted Credentials

Port Service Host Login Password

5432 postgres 192.168.0.155 pi raspberry

Log Entry(275): nmap

Nmap Scan Results

Port State Service

22 open ssh

5432 open postgresql

Page 3 of 4

6. Evaluation

Figure 6.4: Shows nmap results of the Raspberry Pi

Figure 6.5: Index view of the logs.

Figure 6.6: Detail page of the test Raspberry Pi.

58

6.4. Automatic classification and dynamic reporting

This integrated approach to logging and reporting not only ensures meticulous docu-
mentation of each test and its outcomes but also enhances the interpretability of results
through structured presentation formats. For RQ3, the results from different tools can
be automatically interpreted to a certain extent. This means a way has been found to
parse all kinds of output and display them in a nice way with Jinja, and by doing so,
allows for an easy way to make a fitting report template for a tool.

59

CHAPTER 7
Conclusion and Furture Work

The subsequent chapters will delve into the conclusion and delineate prospective avenues
for future work.

7.1 Conclusion
This thesis provides a detailed examination of the functionality of a Testbed, from the
initial integration and information acquisition regarding devices, through the automation
of penetration testing, to the sophisticated presentation of findings and comprehensive
reporting. The following are the key points of the thesis:

• The first research question focuses on the Testbed’s ability to acquire device-specific
information through its traffic. The goal was to identify each device by just looking
at its traffic and search through it with keywords. While the system captures a
range of data and conducts preliminary reconnaissance, there are some inherent
limitations. Specifically, the potential for devices to utilize alternative DNS settings
diminishes the effectiveness of this approach, compromising the comprehensiveness
of data acquisition. Additionally, the failure to capture inbound traffic to the test
device results in the exclusion of potentially critical data, underscoring a significant
constraint in the current operational framework of the Testbed.
This manual approach however, checking the traffic for keywords such as model or
brand type as well as the username to which account the are linked to, yielded a
success rate of 23.07% (two out of 13 devices) which allowed for an identification of
their brand and model showing us that the AI approach here yields more promising
results and is a lot faster.

• The second research question examines the utility of automated penetration testing
facilitated by the Testbed’s integration with tools such as Hydra. The deployment

61

7. Conclusion and Furture Work

of pipelines significantly enhances the Testbed’s usability, enabling systematic and
extensive security assessments. The modular architecture of the system further
amplifies its capabilities, allowing for the incorporation of a diverse array of auxiliary
tools to conduct thorough penetration tests. The successful identification and
brute force extraction of credentials across services underscore the potency and
effectiveness of the existing toolkit within the Testbed’s ecosystem and how easily
it can be extended.

• The third research question benefits significantly from the Testbed’s modular
design, particularly through the utilization of HTML Jinja templates for result
presentation. While attempting to automatically interpret and classify the first
results as succeeded or not worked for some tools, it was rather difficult for others.
On the other hand, the tailored rendering of complex raw outputs into accessible
and aesthetically appealing formats is working well. By selectively emphasizing
pertinent information and omitting extraneous data, the Testbed ensures that
outputs are not only readable but also contextually enriched, catering to a wide
range of analytical and reporting requirements. The system not only facilitates
real-time display of findings within the Testbed’s interface but also supports the
generation of detailed reports. These reports serve as an exhaustive summary of
the device’s security posture and the outcomes of the conducted tests, offering a
pivotal resource for both immediate analysis and future reference.

7.2 Future Work
This thesis has established a robust framework for a modular IoT Testbed that has great
potential in addressing the current cybersecurity challenges faced by IoT devices. While
the Testbed has shown considerable strengths, particularly in automated penetration
testing and data presentation, the exploration of the research questions has illuminated
areas that warrant further development. These insights provide a clear path for future
work, aiming to enhance the Testbed’s capabilities and extend its applicability. Below
are the key areas identified for future enhancements:

• Enhanced Information Acquisition:
The current architecture of the Testbed is effective in capturing certain aspects of
data, but it has limitations in comprehensively acquiring incoming traffic data. This
lack of coverage highlights the need for a more robust information acquisition system
that can successfully monitor and analyze both outbound and inbound network
traffic. To achieve this, future work should focus on integrating advanced traffic
capture mechanisms that can operate at a granular level. This could potentially
involve leveraging deep packet inspection (DPI) to provide detailed insights into
the data transmitted to and from IoT devices. Enhancing the Testbed to function
as a central node or deploying network taps could significantly improve visibility
into network communications, thereby overcoming the current limitations. Further,

62

7.2. Future Work

a tool wrapper will be written for Ettercap, which allows the Testbed to play Man
in the Middle and capture not only outgoing traffic but also the responses that
come back to the IoT device that is being tested. This should work since Ettercap
can use ARP poising to change the MAC address of the router/gateway; by doing
so, the router and the victim device will send their traffic through the Testbed.
This solution effectively addresses the issue of capturing traffic. However, we have
observed that utilizing machine learning approaches yields higher success rates
compared to our manual analysis. This means that for device brand/type detection,
it would be more reasonable to incorporate an established tool like ProfilIoT as an
addon to the Testbed.

• Expansion of Toolset:
The Testbed’s modular design provides opportunities for incorporating additional
tools, expanding its versatility, and enhancing its capabilities. In future expansions,
priority should be given to integrating tools that cover a wider range of cybersecurity
assessments. Diversifying the Testbed’s toolset will enable it to provide a more
comprehensive security assessment, addressing the evolving threat landscape and
the growing complexity of IoT devices.

• Root permissions:
At the moment, certain tools like tcpdump require root privileges to access system
resources. Although this approach is effective, it is not considered the best solution
for managing access permissions and resource utilization. A better strategy would
be to create a dedicated user account with the necessary permissions tailored to the
operational needs of these tools. However, creating such a user and managing its
permissions in alignment with the introduction of new tools can be complex. In this
project, this aspect was not addressed, assuming that the Testbed would operate
only in a local network environment on a dedicated host. Looking ahead, there is
a need to develop comprehensive rights management functionality to simplify the
allocation and administration of permissions, thereby improving the security and
usability of the Testbed in future implementations.

• Integration of Machine Learning Techniques:
The utilization of machine learning techniques offers a promising opportunity to
improve the analytical capabilities of the Testbed. By integrating machine learning
algorithms, the Testbed would be able to automatically recognize unusual behaviors
and possibly malicious activities within network traffic. This methodology could
greatly simplify the process of detecting vulnerabilities and identifying potential
threats, making the Testbed more efficient and effective for real-time security
monitoring.

63

List of Figures

4.1 General project structure . 16

5.1 Shows the run page for hydra on a device 35
5.2 Shows the form to add a new tool . 39
5.3 Shows an example pipeline with nmap and hydra 41

6.1 Shows the distribution of the vendors . 47
6.2 Shows the traffic of the test raspberrypi 48
6.3 Shows the traffic of the test raspberrypi seen from the Testbed 48
6.4 Shows nmap results of the Raspberry Pi 58
6.5 Index view of the logs. 58
6.6 Detail page of the test Raspberry Pi. 58

65

List of Tables

2.1 Testbed solutions . 6
2.2 Network traffic analysis . 8

4.1 DNS Settings . 23
4.2 DHCP Settings . 23

6.1 Device test set . 44
6.2 Garden and Feeder most contacted addresses 48
6.3 Full test device list . 50
6.4 Ports for each device . 51

67

List of Listings

1 Check success of tool . 27
2 Load DNS Helper . 31
3 Addon folder structure . 32
4 Retrieve file extensions per addon . 33
5 Retrieve options per addon . 34
6 Shows the installation process . 35
7 Run an addon/tool . 37
8 Checks if the SSH service is reachable 41
9 Output of Nmap . 52
10 NMap tool info . 53
11 Hydra Postgres output . 53
12 Hydra SSH output . 54
13 Tool_info json with NMap and Hydra information 55

69

Bibliography

[1] Number of IoT devices. https://www.statista.com/statistics/
1183457/iot-connected-devices-worldwide/. (Accessed on 2023-
03-28).

[2] Hospitals attacked by ransomware. https://phoenixnap.com/blog/
ransomware-healthcare. (Accessed on 2023-03-28).

[3] Bertino, Elisa and Islam, Nayeem Botnets and Internet of Things Security
2017 10.1109/MC.2017.62

[4] Top 10 Vulnerabilities that Make IoT De-
vices Insecure https://venafi.com/blog/
top-10-vulnerabilities-make-iot-devices-insecure/ (Ac-
cessed on 2023-03-28).

[5] Internet-of-Things Security and Vulnerabilities: Taxonomy, Challenges, and
Practice Chen, K., Zhang, S., Li, Z. et al. https://doi.org/10.1007/
s41635-017-0029-7 (Published on 10 May 2018).

[6] IoT Devices Recognition Through Network Traffic Analysis Shahid,
Mustafizur R. and Blanc, Gregory and Zhang, Zonghua and Debar, Hervé
10.1109/BigData.2018.8622243 (Published 2018).

[7] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca In-
vernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas, and
Yi Zhou. Understanding the mirai botnet. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 1093–1110, Vancouver, BC, August 2017.
USENIX Association.

[8] Bertino, Elisa and Islam, Nayeem Botnets and Internet of Things Security
2017 10.1109/MC.2017.62

[9] fit iot lab. The very large scale iot testbed. https://www.iot-lab.
info/. (Accessed on 2022-05-10).

71

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://phoenixnap.com/blog/ransomware-healthcare
https://phoenixnap.com/blog/ransomware-healthcare
https://venafi.com/blog/top-10-vulnerabilities-make-iot-devices-insecure/
https://venafi.com/blog/top-10-vulnerabilities-make-iot-devices-insecure/
 https://doi.org/10.1007/s41635-017-0029-7
 https://doi.org/10.1007/s41635-017-0029-7
https://www.iot-lab.info/
https://www.iot-lab.info/

[10] Risk Prediction of IoT Devices Based on Vulnerability Analysis https:
//dl.acm.org/doi/10.1145/3510360. (Accessed on 2023-03-28).

[11] TUI Model for data privacy assessment in IoT networks
https://www.sciencedirect.com/science/article/pii/
S2542660521001062?via%3Dihub. (Accessed on 2023-03-28).

[12] Peek-a-boo: i see your smart home activities, even encrypted! Acar,
Abbas and Fereidooni, Hossein and Abera, Tigist and Sikder, Amit Kumar
and Miettinen, Markus and Aksu, Hidayet and Conti, Mauro and Sadeghi,
Ahmad-Reza and Uluagac, Selcuk 2020 10.1145/3395351.3399421

[13] Classifying IoT Devices in Smart Environments Using Network Traffic Char-
acteristics Arunan Sivanathan and Hassan Habibi Gharakheili and Franco
Loi and Adam Radford and Chamith Wijenayake and Arun Vishwanath
and Vijay Sivaraman 2019 https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=8440758

[14] ProfilIoT: a machine learning approach for IoT device identification based on
network traffic analysis Yair Meidan and Michael Bohadana and Asaf Shabtai
and Juan David Guarnizo and Martín Ochoa and Nils Ole Tippenhauer
and Yuval Elovici 2017 https://dl.acm.org/doi/10.1145/3019612.
30198780

[15] Andy Greenberg. Hackers remotely kill a jeep on the high-
way—with me in it. https://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/. (Accessed on 2022-
05-09).

[16] Matthew L. Hale, Dalton Ellis, Rose Gamble, Charles Waler, and Jessica Lin.
Secu wear: An open source, multi-component hardware/software platform
for exploring wearable security. In 2015 IEEE International Conference on
Mobile Services, pages 97–104, 2015.

[17] Zhen Ling, Kaizheng Liu, Yiling Xu, Yier Jin, and Xinwen Fu. An end-to-end
view of iot security and privacy. In GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, pages 1–7, 2017.

[18] Zhen Ling, Junzhou Luo, Yiling Xu, Chao Gao, Kui Wu, and Xinwen Fu.
Security vulnerabilities of internet of things: A case study of the smart plug
system. IEEE Internet of Things Journal, 4(6):1899–1909, 2017.

[19] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. Smart-
phones attacking smart-homes. In Proceedings of the 9th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, WiSec ’16, page
195–200, New York, NY, USA, 2016. Association for Computing Machinery.

72

https://dl.acm.org/doi/10.1145/3510360
https://dl.acm.org/doi/10.1145/3510360
https://www.sciencedirect.com/science/article/pii/S2542660521001062?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2542660521001062?via%3Dihub
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8440758
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8440758
https://dl.acm.org/doi/10.1145/3019612.30198780
https://dl.acm.org/doi/10.1145/3019612.30198780
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

[20] Vinay Sachidananda, Shachar Siboni, Asaf Shabtai, Jinghui Toh, Suhas
Bhairav, and Yuval Elovici. Let the cat out of the bag: A holistic approach
towards security analysis of the internet of things. In Proceedings of the 3rd
ACM International Workshop on IoT Privacy, Trust, and Security, IoTPTS
’17, page 3–10, New York, NY, USA, 2017. Association for Computing
Machinery.

[21] Aakanksha Tewari and B.B. Gupta. Security, privacy and trust of different
layers in internet-of-things (iots) framework. Future Generation Computer
Systems, 108:909–920, 2020.

[22] Jacob Wurm, Khoa Hoang, Orlando Arias, Ahmad-Reza Sadeghi, and Yier
Jin. Security analysis on consumer and industrial iot devices. In 2016 21st
Asia and South Pacific Design Automation Conference (ASP-DAC), pages
519–524, 2016.

[23] Mengmei Ye, Nan Jiang, Hao Yang, and Qiben Yan. Security analysis of
internet-of-things: A case study of august smart lock. In 2017 IEEE Con-
ference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 499–504, 2017.

[24] Wei Zhou and Selwyn Piramuthu. Security/privacy of wearable fitness
tracking iot devices. In 2014 9th Iberian Conference on Information Systems
and Technologies (CISTI), pages 1–5, 2014.

[25] Celery is a task queue with batteries included. https://docs.celeryq.
dev/. (Accessed on 2024-02-05).

[26] Nmap is a utility for network exploration or security auditing. https:
//www.kali.org/tools/nmap/. (Accessed on 2024-04-19).

[27] Hydra is a parallelized login cracker which supports numerous protocols
to attack. https://www.kali.org/tools/hydra/. (Accessed on 2024-
04-19).

[28] This program allows you to dump the traffic on a network. https://www.
kali.org/tools/tcpdump/. (Accessed on 2024-04-19).

[29] This package contains a Network Forensic Analysis Tool (NFAT) that
performs deep processing and inspection of network traffic (mainly PCAP
files, but it also capable of directly live capturing from a network interface).
https://www.kali.org/tools/bruteshark/. (Accessed on 2024-04-
19).

[30] Self host a DNS server for privacy & security https://technitium.com/.
(Accessed on 2024-02-05).

73

https://docs.celeryq.dev/
https://docs.celeryq.dev/
https://www.kali.org/tools/nmap/
https://www.kali.org/tools/nmap/
https://www.kali.org/tools/hydra/
https://www.kali.org/tools/tcpdump/
https://www.kali.org/tools/tcpdump/
https://www.kali.org/tools/bruteshark/
https://technitium.com/

[31] The most advanced Penetration Testing Distribution. https://www.kali.
org/. (Accessed on 2024-02-05).

[32] The ultimate framework for your Cyber Security operations https://www.
parrotsec.org/. (Accessed on 2024-02-05).

[33] BlackArch Linux is an Arch Linux-based penetration testing distribution for
penetration testers and security researchers. https://blackarch.org/.
(Accessed on 2024-02-05).

[34] The most comprehensive Zero Trust solution for IoT devices.
https://www.paloaltonetworks.com/network-security/
enterprise-iot-security/. (Accessed on 2024-02-26).

[35] Django makes it easier to build better web apps more quickly and with less
code. https://www.djangoproject.com/. (Accessed on 2024-02-27).

[36] The World’s Most Advanced Open Source Relational Database https:
//www.postgresql.org/. (Accessed on 2024-02-27).

[37] Visoottiviseth, Vasaka and Akarasiriwong, Phuripat and Chaiyasart, Sirav-
itch and Chotivatunyu, Siravit PENTOS: Penetration testing tool for Internet
of Thing devices In TENCON 2017 - 2017 IEEE Region 10 Conference doi:
10.1109/TENCON.2017.8228241

[38] Mohd Bakry, Batrisyia B and Bt Adenan, Alisa Rafiqah and Mohd Yussoff,
Yusnani Bt Security Attack on IoT Related Devices Using Raspberry Pi and
Kali Linux 2022 doi: 10.1109/ICONDA56696.2022.10000370

[39] Ronen, Eyal and Shamir, Adi Extended Functionality Attacks on IoT
Devices: The Case of Smart Lights 2016 doi: 10.1109/EuroSP.2016.13

[40] Seralathan, Yogeesh and Oh, Tae Tom and Jadhav, Suyash and Myers,
Jonathan and Jeong, Jaehoon Paul and Kim, Young Ho and Kim, Jeong
Neyo IoT security vulnerability: A case study of a Web camera 2018 doi:
10.23919/ICACT.2018.8323686

[41] Tekeoglu, Ali and Tosun, Ali Şaman A Testbed for Security and Privacy
Analysis of IoT Devices 2016 doi: 10.1109/MASS.2016.051

[42] Omnia (Abu Waraga) and Meriem Bettayeb and Qassim Nasir and Manar
(Abu Talib) Design and implementation of automated IoT security testbed
2020 doi: https://doi.org/10.1016/j.cose.2019.101648

[43] Anagnostopoulos, Marios and Spathoulas, Georgios and Viaño, Brais and
Augusto-Gonzalez, Javier Tracing Your Smart-Home Devices Conversations:
A Real World IoT Traffic Data-Set 2020 doi: 10.3390/s20226600

74

https://www.kali.org/
https://www.kali.org/
https://www.parrotsec.org/
https://www.parrotsec.org/
https://blackarch.org/
https://www.paloaltonetworks.com/network-security/enterprise-iot-security/
https://www.paloaltonetworks.com/network-security/enterprise-iot-security/
https://www.djangoproject.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://doi.org/10.1016/j.cose.2019.101648

[44] Hafeez, Ibbad and Antikainen, Markku and Ding, Aaron Yi and Tarkoma,
Sasu IoT-KEEPER: Detecting Malicious IoT Network Activity Using Online
Traffic Analysis at the Edge 2020 doi: 10.1109/TNSM.2020.2966951

[45] Subahi, Alanoud and Theodorakopoulos, George Detecting IoT User Be-
havior and Sensitive Information in Encrypted IoT-App Traffic 2019 doi:
10.3390/s19214777

[46] Bachy, Yann and Basse, Frédéric and Nicomette, Vincent and Alata, Eric
and Kaâniche, Mohamed and Courrège, Jean-Christophe and Lukjanenko,
Pierre Smart-TV Security Analysis: Practical Experiments 2015 doi:
10.1109/DSN.2015.41

[47] Wood, Daniel and Apthorpe, Noah and Feamster, Nick Cleartext
Data Transmissions in Consumer IoT Medical Devices 2017 doi:
10.1145/3139937.3139939

75

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Manual Analysis
	Frameworks
	Device detection
	Malicious traffic detection and manipulation

	Background
	IoT Devices
	Kali Linux
	Domain Name System
	Dynamic Host Configuration Protocol (DHCP)
	Standard Gateways

	IoT Framework Implementation
	System and Tools selection
	Network Connection
	Device Discovery and First Reconnaissance
	Vulnerability Testing
	Log Review and Classification
	Report generation

	Extending the Framework
	Incorporating Alternative DNS/DHCP Services
	Extending the IoT Testbed with Custom Tools
	Extending the IoT Testbed with pipelines

	Evaluation
	Initial Setup Process
	Traffic analysis
	Tool execution
	Automatic classification and dynamic reporting

	Conclusion and Furture Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Bibliography

