
Easy Impossibility Proofs for
k-Set Agreement

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Kyrill Winkler, BSc.
Matrikelnummer 0201623

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Ulrich Schmid

Wien, 8. Oktober 2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Easy Impossibility Proofs for
k-Set Agreement

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

by

Kyrill Winkler, BSc.
Registration Number 0201623

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Ulrich Schmid

Vienna, 8. Oktober 2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Kyrill Winkler, BSc.
Ybbsstraße 27/17, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Ulrich Schmid for sparking my
interest in the field of distributed computing as well as for his helpful advice and invaluable
insights. Moreover, I would like to thank Manfred Schwarz, BSc., for the multitude of inspiring
discussions we had during the creation of this thesis. In addition, I would like to thank both of
them as well as Dr. Martin Biely and Dr. Peter Robinson for their collaboration on the topic of
directed dynamic networks, which lead to the current version of Chapter 4. The support by the
Austrian Science Fund (FWF) project RiSE (S11405) is also gratefully acknowledged.

Finally, I would like to thank my friends and family for their love and support. I would
especially like to thank my parents and grandparents for providing me with the means to pursue
an academic study. Last, but certainly not least, I would like to thank Angela Ladurner for her
inexhaustible love, support, and patience.

iii

Abstract

This thesis is concerned with impossibility results, i.e., proofs of the fact that certain classes
of algorithms cannot exist. The algorithms investigated are from the field of fault-tolerant dis-
tributed computing, which is devoted to the formal study of processing entities, modeled as
communicating state machines, that may possibly fail and communicate with each other by ei-
ther exchanging messages or via access to a shared memory.

We investigate the problem of k-set agreement, a natural generalization of consensus. While
consensus concerns itself with the task in which all processes eventually have to decide on a
common value that was originally some process’ input value, k-set agreement allows up to k dif-
ferent decision values. Hence, for k = 1, k-set agreement is equivalent to consensus. Although
there exist impossibility results for deterministic consensus in systems prone to failures, relying
solely on combinatoric arguments that might be considered classical today, the corresponding
impossibility results for k-set agreement require complex arguments from algebraic topology.
Nevertheless, there has been recent research on finding “easy” or non-topological impossibility
proofs for k-set agreement, which may also provide a new handle on solving some long-standing
open problems like the weakest failure detector for k-set agreement in message-passing systems.

The focus of this thesis lies on such non-topological impossibilities for k-set agreement. We
present and discuss existing approaches and results and provide rigorous proofs for new results
regarding various models and scenarios, including the important class of dynamic systems that
may evolve over time.

This work has been supported by the Austrian Science Fund (FWF) project RiSE (S11405).

v

Kurzfassung

Diese Masterarbeit beschäftigt sich mit Resultaten, die beweisen, dass bestimmte Klassen von
Algorithmen nicht existieren können. Sie ist im Umfeld der verteilten Algorithmen angesiedelt.
Diese Disziplin behandelt die mathematisch-formale Untersuchung von kommunizierenden Zu-
standsautomaten, die als Prozesse bezeichnen werden. Diese Prozesse interagieren über das Aus-
tauschen von Nachrichten oder über einen gemeinsam verwendeten Speicher miteinander und
können potentiell fehlerhaft sein.

Wir untersuchen das Problem des k-Set Agreement, einer Generalisierung des Consensus-
Problems. Während die Prozesse beim Consensus-Problem die Aufgabe haben, sich schlussend-
lich auf einen einzigen Wert zu einigen, welcher der Eingangswert eines Prozesses war, sind bei
k-Set Agreement systemweit k verschiedene Entscheidungen erlaubt. Im Falle von k = 1 ist
k-Set Agreement äquivalent zu Consensus. Obwohl es Resultate gibt, die beweisen, dass in be-
stimmten fehlerhaften Systemen Consensus von keinem deterministischen Algorithmus gelöst
werden kann, die man heutzutage wohl als “klassische” Resultate bezeichnen könnte und die auf
rein kombinatorischen Methoden beruhen, benötigen die korrespondierenden Resultate für k-Set
Agreement komplexere Argumente aus dem Bereich der algebraischen Topologie. Allerdings
gibt es aktuelle Forschung in diesem Bereich, die nach “einfachen”, d.h. nicht-topologischen,
Beweisen für die Unmöglichkeit, k-Set Agreement zu lösen, sucht. Diese liefert möglicherweise
auch einen neuen Ansatz, um noch ungelöste Probleme, wie etwa das Auffinden des schwächs-
ten Failure Detectors für k-set agreement in Message-Passing Systemen, anzugehen.

Das Hauptaugenmerk dieser Arbeit liegt auf solchen nicht-topologischen Beweisen. Wir
präsentieren und diskutieren existierende Herangehensweisen und liefern rigorose Beweise für
neue Resultate für verschiedenste Modelle und Szenarios, u.a. für die wichtige Klasse von sich
dynamisch mit der Zeit verändernden verteilten Systemen.

Diese Arbeit wurde vom Fonds für Wissenschaft und Forschung über das Projekt RiSE
(S11405) unterstützt.

vii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Short Overview of Related Work . 4
1.3 Outline and Major Contributions . 5

2 Model of Computation 7
2.1 A Distributed State Machine . 7
2.2 Communication . 8
2.3 Synchrony and Failures . 10
2.4 Consensus and k-set Agreement . 11
2.5 Failure Detectors . 13

3 A Generic Impossibility Theorem 17
3.1 Intuition . 17
3.2 The BRS-Theorem . 18
3.3 Synchronous Processes with Asynchronous Messages 21
3.4 Wait-free k-Set Agreement with (Σk,Ωk) . 22
3.5 The Search for a Weakest Failure Detector for Message Passing k-Set Agreement 25

4 Directed Dynamic Networks 27
4.1 Model Overview . 27
4.2 Impossibility of Consensus with Lossy Links 30
4.3 Necessity of Simultaneously Static Root Components for k-Set Agreement . . 32
4.4 Impossibility of k-Set Agreement with Decision Hiding 34

5 Predicated Dynamic Networks 39
5.1 The Predicate Psrcs(k) . 39
5.2 Impossibility of k-set agreement with Moving Source 41

6 General Omission Failures 45
6.1 Omission Failures . 45
6.2 Round Complexity . 46
6.3 k-Set Agreement with Omission Failures . 46

ix

7 Shared Memory 51
7.1 Immediate Snapshot Executions . 51
7.2 Applying the BRS-Theorem to Shared Memory 53
7.3 A Non-topological Impossibility Using a Graph of Executions 56
7.4 Comparing the BRS-Theorem and Counting Arguments 57

8 Summary and Outlook 59

Bibliography 61

x

CHAPTER 1
Introduction

The topic of this thesis are “easy1 impossibility proofs” in the area of distributed computing.
Impossibility results in general are an amazing accomplishment, as they allow us to state that any
conceivable algorithm will fail to solve a certain problem. Since there are usually innumerably
many algorithms that could be devised for a given problem, this means that an impossibility
result proves that no algorithm, irrespective of its ingenuity, can possibly succeed.

Probably the most well-known example for an impossibility proof in computer science is the
proof of the undecidability of the halting problem by Alan Turing. There it is shown, using a self-
reference argument, that there exists no algorithm which can decide for an arbitrary algorithm
A whether or not A terminates. Whereas this impossibility in a way tells us that we should not
even attempt to algorithmically solve the halting problem, the impossibility proofs of this thesis
– and in distributed computing in general (c.f. [1]) – are usually of a somewhat different flavor:
they provide us with lower bounds, i.e. fundamental limitations that make a problem unsolvable.

From the given assumptions, for which we want to show that solving a problem is impossi-
ble, we derive at least one worst-case scenario, where any given algorithm would fail to solve the
problem. Nevertheless, if we have a way to determine the assumption coverage of our model,
we might find that these cases are rare enough to be tolerable in practice. Alternatively, we
might be able to eliminate these cases by strengthening the model, typically via additional en-
gineering efforts, such that the system supplies us with additional guarantees at the expense of
some additional cost. Thus, the importance of the impossibility proofs as presented in this thesis
stems from isolating and elaborating critical aspects of systems that renders a certain problem
unsolvable.

In this work, we study the problem of k-set agreement, which is a natural generalization of
the consensus problem. Consensus describes the task where multiple processing entities, called
processes, with some means of communication (e.g. the sending/receiving of messages or ac-
cess to some shared data storage) each start with some initial value and have to agree on one of

1In this context, an “easy” proof means one that does not rely on arguments from algebraic topology or point set
topology.

1

the starting values, after a finite period of exchanging information and local computation. The
relevance of consensus originates from distributed, i.e., non-centralized, decision making in dis-
tributed applications. Instances of consensus prove useful in synchronization, leader election,
mutual exclusion and other pivotal services in distributed systems. Moreover, it has been shown
that under certain conditions the consensus problem is equivalent to reliable broadcast [31].
While finding algorithms for consensus is easy in systems where the processes as well as com-
munication are reliable, the problem becomes more difficult (some may argue more interesting)
in systems prone to faulty behavior. For example, the celebrated FLP result by Fischer, Lynch
and Paterson [27] revealed that consensus is impossible in asynchronous systems if just a single
process may crash. Subsequent studies of consensus in models with a higher degree of syn-
chrony, such as partially synchronous models or completely synchronous models, revealed a
strong dependency between the impossibility of consensus and the synchrony guarantees of the
system [22, 25].

k-set agreement generalizes consensus in such a way that, instead of only one, up to k
values may be decided on – thus, for k = 1, k-set agreement becomes consensus. Besides of its
interest for exploring the solvability/impossibility border of distributed computing models, k-set
agreement holds significant relevance as a gracefully degrading version of consensus: Assume
for example a setting where communication between some clusters is inhibited for a certain
period of time, as it could occur e.g. in dynamically deployed wireless systems. If there are k
clusters in this system, solving k-set agreement could correspond to solving consensus in each
isolated cluster. When the communication between all clusters is enabled again, solving k-set
agreement might actually result in solving consensus in the system. Such graceful degradation
is usually desired in systems with high availability requirements and/or significant maintenance
cost. At the algorithmic level, it requires code that is unaware of k.

The seminal FLP proof for the consensus impossibility in asynchronous systems with crashes
utilizes combinatoric arguments [27]. However, most existing corresponding impossibility re-
sults for k-set agreement, which show that k-set agreement is unsolvable in asynchronous sys-
tems with k crash failures, rely heavily on topological arguments, sharing a connection to
Sperner’s Lemma [14,19,32]. In order to simplify these proofs and to gain additional insight into
the underlying reasons leading to impossibilities, there has been some recent research on show-
ing k-set agreement impossibilities without utilizing topological methods (for instance [4,5,8]).
This thesis contains a collection of such non-topological proofs: Besides discussing a small se-
lection of interesting existing results in detail, we derive previously unknown results for various
models and systems. Note that two papers [12, 46] presenting these results are being submitted
to a scientific conference and a journal.

1.1 Motivation

The Information Age. When thinking about the advances that have been made in the area of
digital information processing systems during the past decades, the amazing increase of tran-
sistors per chip is arguably the main factor driving the increasing miniaturization and perva-
siveness of today’s computer systems. However, as the processing power of the hardware grew
exponentially over the years, the extent in complexity of the software that controls and utilizes

2

these processing units became apparent. Deepening our understanding of computer systems as
a whole is the goal of the academic research field of computer science. In order to be able
to appropriately describe and advance our understanding in this field, many primarily discrete
theoretical and mathematical methods are employed to find suitable models for the questions at
hand. This form of mathematical analysis has lead to a multitude of insights and accomplish-
ments that would have hardly been obtainable in established fields of natural sciences such as
theoretical physics or theoretical chemistry as well as engineering sciences like theoretical elec-
trical engineering. In computer science, this more abstract form of research has proven to be a
pillar on which today’s computer systems are built, by sparking technologies such as compilers,
operating systems and databases.

Distributed computer systems are one of the key aspects of information technology today.
Since the early 1990s, the Internet has increasingly become a driving factor for many facets of
our society. In addition, networked embedded systems have emerged to further augment the
utility of existing machines and devices and to optimize the efficiency of industrial automation.
The past decade has also marked the advent of multicore architectures, the dominant design
paradigm of modern CPUs. Among the reasons for this renewed focus on multicore chips are
the physical limits imposed by the increasing transistor miniaturization and growing processing
speed.

As the demand for these technologies grew, the complexity of developing distributed com-
puter systems as well as algorithms that exploit multicore architectures efficiently, has become
apparent. This is especially the case for applications with more stringent requirements such as
safety critical real-time systems, where correct design and implementation are of utmost impor-
tance. Thus, the need for a sound theoretical study of these systems that serves to deepen our
understanding of them grows steadily. The field of distributed computing meets this need as it is
the formal and abstract study of distributed computer systems, encompassing the development
of models and algorithms for both networked systems and multicore systems.

Impossibility results, in particular, are an integral part of distributed computing research.
Apart from their previously mentioned usefulness in identifying and isolating system properties
that are crucial for a given problem, they also provide a means to rigorously determine the
quality of some given algorithm. If the algorithm succeeds under a system model such that
modifying the model incrementally (e.g. adding an additional possible crash failure) results in
the impossibility to solve the problem at all, then this algorithm is optimal with respect to this
system property (e.g. the number of potential crash failures in the system). In this sense, an
impossibility result is equivalent to a lower bound for every algorithm.

To some extent, impossibility results even play a role in guiding the research of distributed
computing. Since there exist already a multitude of impossibility results for a great variety of
problems and system models (see e.g. [7,26,34]), researchers may find extremely useful starting
points for further investigation there. Moreover, as mentioned in [26], it often proves useful to
develop impossibility results in parallel with an algorithm: If no algorithm can be found for a
specific reason, then maybe this very reason contributes towards a general impossibility. Or, vice
versa, if no impossibility can be found, the reasons for this could be exploited by an algorithm
that actually solves the problem. Additionally, it was the impossibility of certain problems that
lead to the active research area of failure detectors (cf. [15, 16]), where, simply put, the goal is

3

to find the properties an oracle must provide in order to make an unsolvable problem solvable,
often with the additional constraint that the oracle is weaker than all other oracles that could
achieve this. It hence seems particularly promising to use the methods described in this thesis in
the still ongoing search for the weakest failure detector for message-passing k-set agreement, as
we will elaborate in Chapter 3.

The focus of this thesis are easy (non-topological) impossibility results for k-set agreement.
Such non-topological results are important because, as already mentioned, they may supply us
with a more immediate understanding of the involved fundamental limitations than their complex
topological counterparts. Of course, we do not intend to diminish the relevance and achievement
of topological impossibility proofs for k-set agreement, but merely stress the scope and limita-
tions of the non-topological variants. An interesting aspect of the topological proofs is that they
essentially show a perpetual preservation of “undecidedness”, made possible by a clever mod-
eling of executions of algorithms as structures where certain symmetries can never be broken.
We describe in detail a combinatoric interpretation of this idea in Chapter 7. In contrast, the
proofs that we developed in the course of this thesis are essentially based on a partitioning ar-
gument, where the core is always an isolation of components of the system that inevitably leads
to the algorithm making a mistake. The question whether and how these different causes for
impossibilities are connected was one of the key issues that motivated this work.

1.2 Short Overview of Related Work

In their breakthrough result, Fischer, Lynch and Patterson showed that consensus is impossible
in asynchronous message passing systems even with just a single crash failure [27]. This result
may be regarded as the dawn of impossibility proofs in the field of distributed computing [26]. It
is established employing a so-called bivalence proof, a concept which we will introduce in more
detail in Chapter 2.

Dolev, Dwork and Stockmeyer extended this result, by providing a comprehensive set of
proofs for varying system parameters that influence the solvability of consensus in [22]. They
investigated the fundamentals of impossibility proofs for consensus and found very general cri-
teria that imply impossibility in message passing systems. They provide generic theorems and
lemmas that are then used to show concrete impossibilities, respectively possibilities, for con-
sensus for a total of 32 different combinations of model parameters. Their research resembles
the key aspect that forms the motivation behind many impossibility proofs in this field, i.e., iden-
tifying and isolating those aspects of a system model that determine the solvability of a given
problem, as mentioned previously in this chapter.

In their seminal work, Santoro and Widmayer presented a model for dynamic communica-
tion faults and showed the fundamental impossibilities for consensus in such settings [43]. They
divide possible communication faults into three categories and present lower bounds and impos-
sibilities for consensus for each of them. A comprehensive overview of the topic of dynamic link
failures, which also includes new results that have been applied in this thesis, has been published
by Schmid, Weiß and Keidar in [44].

Encouraged by the unsolvability of consensus, researchers began to focus on the natural
generalization of consensus, k-set agreement. Borowsky and Gafni, Chaudhuri, and Herlihy and

4

Shavit (independently) proved the impossibility of k-resilient (i.e. tolerating up to k crashes)
k-set agreement in [14, 19, 32]. Although their approaches differ significantly in detail, the idea
common to all of them is modeling some crucial properties of certain executions of algorithms
as topological simplices, to which Sperner’s Lemma may be applied. This essentially enables
the infinite preservation of a non-terminal state of a sufficiently large “core” of processes that
implies the desired impossibility. As these results require arguments from algebraic topology,
we will not go into their details in this thesis, but instead focus on recent corresponding non-
topological impossibility results for k-set agreement: Some non-topological impossibilities for
k-set agreement have recently been published by Attiya and Castañeda in shared memory [4]
and by Attiya and Paz in [5]. We will discuss these results and their connection to different
non-topological approaches for the impossibility of k-set agreement in detail in Chapter 7.

The impossibility proof for k-set agreement motivated the search for the weakest failure
detector that makes k-set agreement solvable. While the weakest failure detector for shared
memory systems has already been found [20, 21], the search for the weakest failure detector for
k-set agreement in message passing systems is still ongoing. A comprehensive overview of this
research can be found in [13]. We will discuss some important results related to this topic in
Section 3.5 and explain why non-topological impossibility results may be a promising tool for
closing this gap in our knowledge about distributed computing.

Biely, Robinson and Schmid have recently presented a generic theorem for showing im-
possibilities of k-set agreement in message passing systems [8]. This theorem is applicable to
a variety of system parameters and will be referenced and applied throughout this thesis. We
provide an overview and a detailed description of the theorem in Chapter 3. A comprehensive
survey on the topic of impossibility results in distributed computing has been elaborated by Fich
and Ruppert [26]. There, they present many of the fundamental principles that are employed
in impossibility proofs, discuss and rigorously compare various models frequently used in dis-
tributed computing and finally present many existing impossibility results.

Regarding algorithms for consensus and k-set agreement in dynamic networks, we refer to
the publications [9, 10] by Biely, Robinson and Schmid: Key aspects of these models as well as
selected theorems on which we will rely upon in order to derive new results will be elaborated
in Chapters 4 and 5.

Raynal and Travers published a k-set agreement algorithm that is optimal with respect to
the number of tolerated general omission failures in [41]. General omission failures are a more
general type of failures than crash failures and include crash failures as a special case. We will
provide a short presentation of this algorithm in Chapter 6.

Finally, the books of Attiya and Welch [7] and Lynch [34] provide an extensive introduction
into the field of distributed computing as well as a thorough presentation of many advanced
topics along with pointers to further literature.

1.3 Outline and Major Contributions

• Chapter 2 provides a formal introduction of our generic computing model. We state the
common properties and provide an overview of all the computing models used in this

5

thesis. Some details, such as the precise failure assumptions, will be introduced in the
according chapters.

• Chapter 3 repeats and analyzes a generic impossibility theorem for k-set agreement. Sub-
sequently, we will often reference and apply this theorem in various models and scenarios.
A selection of these applications will be published in a journal version of the original paper
from [8] that is about to be completed.

• Chapter 4 introduces systems where communication is highly dynamic, as it occurs e.g. in
networked portable devices or wireless sensor networks. We model such systems, using
sequences of directed graphs that determine the actual communication among processes
over time. We call these systems synchronous directed dynamic networks (DDNs) and
establish the following new impossibilities for DDNs:

– Impossibility of consensus with moving root components

– Impossibility of k-set agreement with a single moving root component

– Impossibility of k-set agreement where a single root is stable only for short intervals

– Impossibility of k-set agreement where decisions can be hidden from future root
components

We used the latter impossibility in a related publication [46], which is under review at the
time of writing, to find a weak assumption that enables solving k-set agreement in this
setting and an according algorithm.

• Chapter 5 explores the foundations of DDNs starting out from a compact predicatePsrcs(k)
that is sufficient to solve k-set agreement. We provide the following new impossibility re-
sults:

– A novel predicate Prsrcs(k), which is slightly weaker than Psrcs(k), makes k-set
agreement impossible.

• Chapter 6 analyzes the scenario where senders and/or receivers may be faulty, i.e., in
contrast to DDNs, communication failures are modeled by means of process faults. We
provide the following new non-topological prof for a known lower bound on the time
complexity:

– In systems where t processes may exhibit general omission faults, k-set agreement
is impossible in less than t

k rounds.

• Chapter 7 explores the setting where communication occurs via shared memory, a model
that provides much stronger guarantees to the algorithm than the message-passing mod-
els discussed in the previous chapters and therefore makes showing impossibilities more
difficult.

– We investigate what parts of the BRS-Theorem are applicable in the shared memory
model and what remaining part is not applicable and why.

6

CHAPTER 2
Model of Computation

2.1 A Distributed State Machine

We model a distributed computing system as an ensemble or set of processes Π. Each process
pi ∈ Π knows its unique identifier i that ranges between 1 and n = |Π|, the total number of
processes in the system. A single process, executing an instance of a deterministic algorithm
is modeled as a deterministic state machine. It possesses an unlimited amount of memory that
comprises its current state as well as some means of exchanging data with other processes, as
described in Section 2.2. Each process is associated with a transition function that maps to each
state a single successor state. We usually specify the transition function itself using an algorithm
in pseudo-code. We say a process takes a step when a process performs the transition from a
state to its successor state. In our model steps are instantaneous and atomic; however, we might
impose certain restrictions on the frequency with which processes may take steps relative to each
other through synchrony assumptions, as described in Section 2.3.

We call the set of states of all the processes in the system a configuration of the system,
denoted Ci. C0 denotes an initial configuration, composed of initial states of all processes. A
transition from a configuration Ck−1 to a successor configuration Ck is triggered by an event φk,
which is said to occur at time k. This concept of time describes a global time that is usually not
observable by a process but used for analysis purposes only.

An event φk may be a computation step of an individual process or a communication event,
for example the reception of a message, as described in the next section. Sometimes it is useful
to group single events together into compound events. It could for example be beneficial to
abstract from single computation events in systems where processes are controlled by a central
clock and instead consider a single computation event at every process as one compound event.
In the context of impossibility proofs we usually think of the events being scheduled by an
adversary that aims to derive a special case where any algorithm must fail. We usually aim to
restrict the capabilities of the adversaries in a sensible way, as described in Section 2.3.

We call a (possibly infinite) sequence of configurations and events C0, φ1, C1, φ2, . . . an
execution or run of an algorithm. In the exemplary configuration tree of Figure 2.1, an execution

7

C0 Ck−1

C ′k

C ′′k

..
.

Figure 2.1: Configuration Ck−1 is reachable from the initial configuration C0, as indicated by the wavy
line. This means that there is a sequence of configurations that starts in C0 and ends in Ck−1, where each
configuration (except forC0) in this sequence is a successor of the previous configuration. Configurations
C ′k, C ′′k and possibly many more (as indicated by the three dots) are successor configurations of Ck−1.

corresponds to a single path through the tree.
An execution is called admissible if it adheres to the fairness and failure assumptions of the

model. For instance, this usually requires that in an infinite execution every process takes an
infinite number of steps, which essentially corresponds to the constraint that no process may
starve. An algorithm is said to be correct or solve a given problem, if it generates only execu-
tions that adhere to the problem specification. We usually state the problem specification itself
using safety and liveness conditions. Intuitively, a safety conditions corresponds to the require-
ment that “something bad will never happen”, while a liveness condition asserts that “something
good will eventually happen”. Formally, in a correct algorithm, a safety condition must be met
in every prefix of an execution (e.g. a process may never stop to make any steps), while a live-
ness condition must be met in every execution some number of times, possibly even an infinite
number of times (e.g. a process must make an infinite number of steps).

Two executions of an algorithm α, β are indistinguishable for a a process p, denoted α
p∼ β

if p observes no difference between α and β, i.e. if p’s view of the distributed system is the same
in α and in β. In particular, p executes the same state transitions in α and β. For example in the
case of a system where communication occurs via the sending and receiving of messages, this
corresponds to p starting in the same state and receiving the same messages in α and β. If α and
β are indistinguishable for all processes in a set of processes D, we write α D∼ β.

Indistinguishability of executions is a central concept in impossibility proofs: Proving that
there does not exist an algorithm that solves a certain problem is possible by showing that any
algorithm that would solve this problem also generates executions which are indistinguishable
for some process from executions where the problem remains unsolved.

2.2 Communication

We will study two different primitives for communication among the processors of a distributed
system. The first is message passing, where processes communicate by the sending and receiv-
ing of messages. The second is shared memory where all processes have access to a common
data storage.

8

Asynchronous message passing can always be simulated in asynchronous shared memory,
however the other direction of the simulation is not always possible (this possibility depends
on the number of allowed crash failures) [7, Section 5.33 and Theorem 10.22]. This leads
to the conclusion that the shared memory model possesses more expressive power; from the
perspective of the algorithm, shared memory allows event ordering by means of “write before
read”, for example, which cannot be implemented in message passing. Therefore, message
passing is a less powerful yet more fundamental model than shared memory.

Message Passing

We use a model based on [22] and describe message passing by using a local buffer at every
process that contains the messages which have been sent to that process but not yet delivered.
In their transition function, i.e. during a step, processes may access a send(p,m) function that
puts the message m into p’s buffer. We call this function the message sending function. This
enhances the set of events in our model by a send event and extends the state transition function
of a process to depend not only on the local state but also on the contents of its message buffer.

The time it may take from calling send(p,m) until m is actually put into p’s buffer depends
on our synchrony and failure assumptions, as described in the next section.

Shared Memory

A shared memory variable X is denoted by an uppercase letter and can be accessed by any
process through instantaneous (zero-time) read(X) and write(X) operations. Consequently, the
state transitions in a shared memory system depend not only on the local state of the processes
but also on the contents of the shared memory.

In this thesis we will focus on single-writer/multi-reader (1WnR) registers. These shared
memory variables can be written only by a single dedicated process, while every process can
read their content. The more fundamental single-writer/single-reader (1W1R) registers can be
used to construct single-writer/multi-reader registers at the cost of some efficiency [40].

We will furthermore restrict ourselves to immediate snapshot (IS) executions. An IS exe-
cution α = s1, s2, . . . consists of a sequence of non-empty sets si of processes making steps,
where shared memory access of the processes in si is restricted as follows: One process after
the other writes to the shared memory in some arbitrary sequence, followed by all processes of
si reading from the shared memory simultaneously. We denote a r-times repetition of si by sri .

Only considering IS executions may seem, at first glance, like an undue simplification of
the model that saves us the trouble of considering more complex cases. In truth, however, when
we are concerned with showing impossibilities, using a stronger model that supplies additional
guarantees to the algorithm only strengthens the impossibility result: If the stronger case already
leads to an impossibility, i.e., to an algorithm-independent execution that does not solve the
problem, then this very same execution can also be obtained when running the algorithm in the
more general version of the model, as long as the admissible executions in the relaxed variant are
a superset of the restricted version. This is an important aspect of many impossibility proofs [26].

9

2.3 Synchrony and Failures

A commonly used perspective is to view the execution of a distributed algorithm as a game
versus an adversary. The adversary is in control of certain important parts of the system, that are
outside the sphere of control of the algorithm, in particular occurrence times of computing events
and failures, according to some rules set forth in the system and failure model. As developers
we need to design an algorithm that implements a winning strategy, i.e., wins no matter what the
adversary does within its model.
The power of the adversary is restricted by our model, in particular w.r.t. the scheduling of the
processes, the delay of the messages and the type and number of failures.

Synchrony defines the timing properties of the system, thereby establishing the rules for the
scheduling of the processes’ computation as well as the delay between sending and receiving a
message by the adversary. Failure assumptions limit the amount and type of failures that may
occur in our system. There are many different synchrony and failure assumptions that prove
useful in a multitude of applications, however we will illustrate only a small selection that is
relevant in our context here.

This means that, given a basic model for a distributed system, the synchrony and failure
assumptions are the means by which we can strengthen or weaken the adversary.

Synchrony of Processes

We already stated that the steps a process makes are atomic and instantaneous in our model. In
real-world computer systems, however, executing instructions incurs a delay, which is the source
of many interesting questions in computer science. We take this into account in our model by
allowing finite time to pass between steps. We call a sequence of steps (determined by the
delays) a schedule of the system. When proving the correctness of an algorithm, this schedule is
chosen by the adversary from the set of allowed schedules as defined by the process synchrony
assumptions. We give two examples for such synchrony assumptions:

Asynchronous processes is equivalent to the absence of any restriction on the process schedul-
ing, i.e. any process can take a step, according to its transition function, at any time and any finite
delay may occur between these steps. This corresponds to the most powerful adversary regard-
ing the process scheduling.

With the assumption of synchronous processes, a schedule consists of a sequence of time
intervals of identical length, where all processes simultaneously execute one step. We call one
such interval a round of a synchronous schedule. Synchronous processes are a stronger assump-
tion than asynchronous processes.

Synchrony of Messages

We consider synchronous messages only in conjunction with synchronous processes, where
computation proceeds in lock-step rounds. Each round consists of the sending of messages, the
delivery of all pending messages, and a computation step at every process.

Asynchronous messages means that the message delay may be arbitrarily large but finite.
This implies that in an admissible execution, messages never get lost and must eventually arrive,

10

yet their delay may be unbounded. This is particularly important in a scenario where a process
might crash and messages are asynchronous: It may be impossible for a process that waits for an
incoming message to determine whether this message will still arrive at some point in the future
or if the process that was supposed to send the message has crashed.

Failures

Real computer systems are prone to errors which in turn may lead to failures. Modeling failures
of computing systems is a concern in many areas of computer science, especially in dependable
systems engineering. The range of failure models is considerable: Byzantine failures [33] allow
processes to exhibit arbitrary behavior that is completely independent of the transition function.
This means that Byzantine failures enable us also to model an intelligent attacker, aiming at
compromising the system. In the main part of this thesis, however, we will restrict ourselves to
crash failures, which enable us to model a process that ceases operating. We will introduce more
severe failure models later in Chapter 6.

A crash failure is said to occur at a processes if, from a certain instant on, the process stops
to make any steps. This instant is completely arbitrary, which means that the process may even
crash during a step. An especially insidious kind of crash is one where a process crashes while
sending a message: in this case the message may reach only a subset of the intended recipients.
A priori we do not know which processes will crash; the failure assumptions only state an upper
bound on the number of processes that may crash. Let F to denote the set of faulty processes
and let |F | = f . An algorithm that tolerates up to f failures is called f -resilient.

Following our definition of time as the number of events that happened so far (cf. Sec-
tion 2.1), we call the set of processes that crashed in an execution by time t the failure pattern
F (t). The set of allowed failure patterns is called the environment E of our system. For instance,
considering only up to f crash failures corresponds to setting the environment to include only
those failure patterns where |F (t)| ≤ f for all t ≥ 0. Another popular example is the wait-free
environment where all processes but one may crash.

2.4 Consensus and k-set Agreement

Consensus and, more generally, k-set agreement are problems where the processes hold an initial
proposal value xi, which is taken from a finite set V . In the case of binary consensus |V | =
2 and usually V = {0, 1}. For k-set agreement, we assume |V | > k to circumvent trivial
solutions. The processes must agree upon a single non-trivial final value that is assigned once
and irreversibly to a write-out output variable / value yi during an execution. We call yi the
decision value. An algorithm that solves consensus must satisfy the following properties:

Agreement No two correct processors may decide on a different yi.

Validity If yi = v then v is some pi’s xi.

Termination Eventually every correct pi assigns a value to yi.

11

While the agreement and termination conditions are rather straight-forward, validity ensures
that there can be no trivial decision value, thereby excluding algorithms where the processes
decide on a predetermined value. Termination is a liveness property, whereas agreement and
validity are safety properties.

Modifying the agreement condition by demanding that all processes – in particular, even the
faulty ones that decide – must agree on the same yi, results in the stronger uniform agreement
condition and the resulting uniform consensus problem. While in synchronous systems uniform
consensus is harder to solve than consensus, for purely asynchronous systems, the two problems
are equivalent [17]. The reason for this is that, in an algorithm that solves consensus in an
asynchronous system, a process that decides must be in agreement with all other processes, in
particular also with those that are very slow. Since a deciding process is unable to distinguish
between very slow processes and crashed processes, uniform agreement is hence mandatory.

k-set agreement is a generalization of consensus where, instead of a unique decision value, k
different decision values are permitted system-wide [19]. In this sense, consensus is the special
case of k-set agreement where k = 1. k-set agreement translates to replacing the agreement
property of consensus by the following k-agreement property:

k-Agreement There may be no more than k different decision values yi obtained by correct
processes.

In their seminal work, Fischer, Lynch and Paterson managed to prove that consensus is
impossible in a completely asynchronous system with even a single crash failure, using only
combinatoric arguments [27]. Subsequently, researchers tried to find a similar bound for k-set
agreement, which turned out to require quite different methods.

An impossibility result for k-set agreement, which based on topological arguments, was
found independently from each other by three different research groups. They showed that k-set
agreement is impossible if k or more crash failures can occur [14,32,42]. All these results share
a connection to Sperner’s Lemma which enables the perpetual preservation of an undecided
configuration. We will present a non-topological variant of this idea later in Chapter 7.

Note that, for k = 1, this result matches exactly the consensus impossibility. Observe that,
for less than k failures, a simple algorithm exists in asynchronous systems: k predetermined
processes propose a value by communicating it to the processes in the distributed system and
every process decides on the first value it receives. We will usually assume that k < n, as k-set
agreement can be trivially solved when k = n by an algorithm where every process decides on
its input value.

Bivalent and Univalent Configurations

An important tool for proving impossibilities for binary consensus (|V | = 2) was introduced
along with the original proof for the asynchronous consensus impossibility with crash failures
[27]: the valence of a configuration. Proofs that use the valence of a configuration are commonly
referred to as “bivalence proofs”. By definition every execution of a binary consensus algorithm
must lead to exactly one of the two possible decision values 0 and 1. For the value v ∈ {0, 1},
valences are defined as follows:

12

• A configuration C is called v-decided if all processes have decided on the value v.

• A configuration C is called v-valent, if a v-decided configuration is reachable from C
and no (1 − v)-decided configuration is reachable from C. A v-valent configuration is
sometimes also called univalent.

• A configurationC is called bivalent, if there is a v-valent and a (1−v)-valent configuration
reachable from C. Note that a bivalent configuration cannot be a terminal configuration
for consensus, i.e., a configuration where every process has decided. In fact, no process
can have decided in a bivalent configuration.

A bivalence impossibility proof is usually a proof by induction: It first establishes that there
is a bivalent initial configuration and then proceeds to showing that any bivalent configuration
has a bivalent successor configuration. The implication of such a bivalence proof is that there
is an execution where the configurations are perpetually bivalent – i.e. an execution that never
terminates. Thus, the algorithm does not solve consensus in all executions. We usually go even
one step further and show that any algorithm has a perpetually bivalent execution in a certain
system – thus proving that consensus is impossible in the given system.

2.5 Failure Detectors

Given an impossibility result, which states that there is no algorithm which solves some problem
in a certain system, one is often interested in the question what properties of the model made the
problem unsolvable. This line of research is especially interesting from an engineering point of
view, as it may be possible to adjust a real-world system with reasonable effort in such a way that
it corresponds, with a sufficiently high assumption coverage, to a model in which the problem
is indeed solvable. A very convenient tool for finding such “solvability boundaries” are failure
detectors.

A failure detector is an oracle that can be queried by a process during a computation step
(cf. [16]). As their name implies, failure detectors provide a process with information that
could usually not be obtained by “regular” means, for example, whether some other process has
crashed in a system with asynchronous messages. Just as the Oracle of Delphi however, failure
detectors usually don’t give trustworthy answers when queried. Rather, their responses merely
adhere to a set of rules, called the failure detector specification, which is characteristic for each
type of failure detector.

An important result about failure detectors is that we can often compare them based on the
rules they abide by, thereby establishing a partial order of stronger and weaker failure detectors.
Using such orderings, we can answer the question of which property of a model is necessary to
render a problem solvable, by finding a weakest failure detector for this problem. Interestingly,
the weakest failure detector for k-resilient k-set agreement in message passing systems is still
unknown, despite 15 years of failure-detector-related research.

Formally, a failure detector maps a process identifier and a point in time to an element from
the failure detector’s output range. We call this mapping the failure detector historyH(p, t). We
define executions where a failure detector may be queried as follows: In an admissible execution,

13

at any point in time t, the failure detector must output only legal histories. A failure detector
history is called legal when it is in accordance with the failure detector specification applied to
the failure pattern F (t) of the execution, i.e. the set of processes that failed until t.

Comparing Failure Detectors

We already stated that an order among failure detectors may be established and go now into the
details of how this can be achieved. The basic idea is that we search for (purely asynchronous)
algorithms that transform a failure detector D to another failure detector D′. An algorithm
in a system that is augmented by D is said to transform D to D′, in symbols AD→D′ , if the
processes hold a variable which emulates a failure detector history of D′. The existence of such
a transformation algorithmAD→D′ implies that the output ofD′ may be deduced from the output
of D. Thus, if AD→D′ exists, we call D′ weaker than D (D′ ≤ D), respectively D stronger than
D′. If additionally also an algorithm AD′→D exists, we call D equivalent to D′, and if AD′→D
does not exist, we call D′ strictly weaker than D, respectively D strictly stronger than D′.

From the above definition of an ordering of failure detectors we can conclude that if a prob-
lem is unsolvable usingD andD′ ≤ D, then the problem is also unsolvable usingD′. The reason
why this is the case is because, by definition, D′ ≤ D implies that D′ can be “extracted” from
some algorithm that uses D. Therefore, combining the solution using D′ with AD→D′ would
provide a solution using D, which does not exist.

The Failure Detector Σ

The first failure detector we will introduce is the quorum failure detector Σ. According to [7,
Theorem 10.22] shared memory (or more specifically, atomic registers) may be simulated in
message passing systems only if a majority of the processes is correct. It has been shown that
Σ is the weakest failure detector to perform this simulation in systems with arbitrary failure
patterns, i.e. in any environment E [29].

Considering that Σ is powerful enough to perform the above simulation, it is perhaps some-
what surprising that Σ merely guarantees to eventually output only non-faulty processes. Still,
the output of Σ at two different processes is guaranteed at any time to have at least one com-
mon element. Formally, Σ satisfies the following two properties for all environments E and all
possible failure patterns F (.) ∈ E .

Intersection: For any two processes p, p′ and any time instants t, t′ it holds that H(p, t) ∩
H(p′, t′) 6= ∅.

Liveness: ∃t∀t′ ≥ t ∀p /∈ F : H(p, t′) ⊆ (Π \ F)

In order to satisfy the intersection property for all E , we define the failure detector’s history
for processes p ∈ F (t) that are faulty from time t on as ∀t′ ≥ t : H(p, t′) = Π.

14

The Failure Detector Σk

The generalized quorum failure detector is denoted Σk, where Σ corresponds to Σ1. It was
shown that Σk must be implementable from any failure-detector based solution for k-set agree-
ment in message passing systems [13]. Like Σ, Σk also satisfies an intersection property, albeit
for sets of (k+1) processes, thereby matching the intersections for pairs of processes in the case
of k = 1. The liveness property of Σk is the same as in Σ:

Intersection: For all sets {p1, . . . , pk+1} of k + 1 processes and all multisets t1, . . . , tk+1 of
k + 1 time instants, there exist indices i, j with 1 ≤ i 6= j ≤ k + 1 such that H(pi, ti) ∩
H(pj , tj) 6= ∅.

Liveness: ∃t∀t′ ≥ t ∀p /∈ F : H(p, t′) ⊆ (Π \ F)

As with Σ, we assert p ∈ F (t)⇒ ∀t′ ≥ t : H(p, t′) = Π.

The Failure Detector Ω

Ω stands for the eventual leader failure detector. It was shown to be the weakest failure detector
that allows to solve consensus in asynchronous message passing systems with a majority of
correct processes [15]. The combination Σ×Ω = (Σ,Ω), whose history is a pair of values, one
for Σ and one for Ω, has been shown to be the weakest failure detector for wait-free consensus,
i.e. (n− 1)-resilient consensus [29].

Ω outputs only a single process identifier and eventually will output the same correct (trusted)
processes at all non-faulty processes, which can be expressed formally as the following two
properties:

Validity For all processes p and all times t,H(p, t) ∈ Π.

Eventual Leadership There exists a time tGST and a correct process q such that for all correct
processes p and times t′ ≥ tGST,H(p, t′) = q.

The Failure Detector Ωk

Ωk is the generalized leader oracle where Ω corresponds to Ω1. The generalization is that Ωk

outputs a set of k processes, which eventually contains at least one correct process and eventually
does not change anymore. Formally, Ωk is defined as satisfying the following properties for all
environments E and all possible failure patterns F (.) ∈ E :

Validity For all processes p and all times t,H(p, t) is a set of k processes.

Eventual Leadership There exists a time tGST and a set of processes LD with (LD ∩ (Π \
F)) 6= ∅ such that for all correct processes p and times t′ ≥ tGST it holds that H(p, t′) =
LD.

15

Ωk alone already allows solving k-set agreement in message passing systems with a majority
of correct process [35]. The combination of Σk × Ωk = (Σk,Ωk) outputs a value for Σk and
one for Ωk. (Σn−1,Ωn−1) is able to solve (n− 1)-set for agreement [13], however, it is shown
in [8] that (Σk,Ωk) is not strong enough to solve wait-free k-set agreement for all k. This result
will be investigated in detail in Section 3.4.

16

CHAPTER 3
A Generic Impossibility Theorem

This chapter contains a detailed description of the non-topological impossibility theorem, orig-
inally published as [8, Theorem 1] and subsequently called BRS-Theorem, with additional dis-
cussions and explanations.

3.1 Intuition

In order to prove that k-set agreement is impossible in the model of a distributed computing
system with a given communication primitive and given synchrony and failure assumptions, it
suffices to show that any k-set agreement algorithm has at least one run where more than k
decision values are decided upon. In other words, if we could somehow exploit the inherent
system properties in such a way that, independent of a concrete algorithm, there are too many
decision values, we had shown impossibility of k-set agreement in the given model.

This idea is utilized in the BRS-theorem: In order to apply the theorem to a given sys-
tem model, we need to find a partitioning, i.e., pairwise disjoint, non-empty sets of processes
D1, D2, . . . Dk with

⋃k
i=1Di = Π. To stress its special role, we write D for the set Dk. We

choose the partitions such that consensus is impossible in D (by this we mean that the processes
of D could not solve consensus when left to run isolated from the rest of the system), there
are runs where processes start with distinct proposal values, and the following properties are
satisfied (cf. Figure 3.1):

(dec-D) For every set Di, 0 < i < k, a distinct value vi was proposed by some p ∈
⋃k−1
i=1 Di,

and there is some q ∈ Di that decides vi.

(dec-D) The processes in D may not receive any messages from a process p ∈ Π \ D until
every process in D has decided.

Note carefully that (dec-D) implies thatD is partitioned from the rest of the system (also) in
terms of communication: No process of D may hear from any process of Π \D before making

17

a decision. Actually, although not explicitly required by (dec-D) and (dec-D), it is typically
also necessary that every other Di is partitioned from the rest of the system as well in order to
guarantee the distinct decision vi.

D1

A unique decision
y = vi occurs in

every partition Di D2

..
.

Dk−1

D

messages are received
by D only after all pro-

cesses in D have decided

consensus is
impossible in D

Figure 3.1: A k-partitioning

If such a partitioning exists, there is an intuitive explanation why k-set agreement is impos-
sible: Consider a run of an Algorithm in a system where such a partitioning can be applied and
every process starts with a unique initial value. Property (dec-D) provides us with the processes
in Π \ D having at least k − 1 distinct decision values that are different from the initial val-
ues in D. By property (dec-D), D may receive information from any other partition only after
all processes in D have decided. Therefore, in order to be able to establish the safety prop-
erty k-agreement in the system, the processes of D must decide on the very same value, which
contradicts that consensus is impossible in D.

3.2 The BRS-Theorem

The theorem uses a simulation that allows us to express running an algorithm designed for the
n processes Π only on a subset of processes D ⊆ Π. This is done by modifying the message
sending function such that, when a process initiates a broadcast, the message is only sent to the
processes in D. We call this simulation a restriction of an algorithm and define it formally as
follows:

Definition 1 (Restriction of an Algorithm from [8, Definition 1]). Let A be an algorithm that
works in systemM = 〈Π〉 and let D ⊆ Π be a nonempty set of processes. Consider a restricted
systemM′ = 〈D〉. The restricted algorithm A|D for systemM′ is constructed by dropping all
messages sent to processes outside D in the message sending function of A.

Note that, according to this definition, for the processes running A|D it looks like they are
part of a larger system 〈Π〉 and just don’t receive any messages from any process outside of D.
In particular, they perceive the number of processes in the system as |Π|. Nevertheless, A|D

18

is a valid distributed algorithm for a distributed system made up of the processes in D only.
Obviously, it would also be possible to drop any dead code from the transition relation of A|D
(devoted to processing messages from Π \D, for example).

The next definition is required to compare two sets of runs with regard to their indistin-
guishability for a fixed set of processes D. Note that the indistinguishability α D∼ β here means
that α and β are indistinguishable for the processes inD until decision, i.e. it is slightly different
from the notion introduced in Section 2.1, which holds throughout the entire execution.

Definition 2. [Compatibility of Runs from [8, Definition 3]] Let R and R′ be sets of runs. We
say that runs R′ are compatible with runs R for processes in D, denoted by R′ 4D R, if
∀α ∈ R′ ∃β ∈ R : α

D∼ β.

Finally, letMA denote all runs of algorithm A in systemM = 〈Π〉, andM′A|D
be all runs

of A|D in systemM′ =
〈
D
〉
. We can now repeat the BRS-Theorem:

Theorem 1 (k-Set Agreement Impossibility from [8, Theorem 1]). LetM = 〈Π〉 be a system
model and consider the runsMA that are generated by some fixed algorithm A inM, where
every process starts with a distinct input value. Fix some nonempty and pairwise disjoint sets
of processes D1, . . . , Dk−1 and a set of distinct decision values {v1, . . . , vk−1}. Moreover let
D =

⋃
1≤i<kDi and D = Π \D. Consider the following two properties:

(dec-D) For every set Di, 0 < i < k, value vi was proposed by some p ∈
⋃k−1
i=1 Di, and there

is some q ∈ Di that decides vi.

(dec-D) If pj ∈ D then pj receives no messages from any process in D until every process in
D has decided.

Let R(D) ⊆MA and R(D,D) ⊆MA be the sets of runs of A where (dec-D) respectively both,
(dec-D) and (dec-D), hold. Suppose that the following conditions are satisfied:

(A) R(D) is nonempty.

(B) R(D) 4D R(D,D)

In addition, consider a restricted modelM′ =
〈
D
〉

such that the following hold:

(C) Consensus is impossible inM′ =
〈
D
〉

(D) M′AD
4DMA

Then, A does not solve k-set agreement inM.

Note that the theorem requires four properties of a partitioning that make k-set agreement
impossible. This means that if some algorithm A suffers from such a partitioning, the theorem
implies that A cannot solve k-set agreement. When proving the general impossibility of k-set

19

agreement for a given system, applying the theorem will usually entail showing that all possible
algorithms designed for this system allow a partitioning that satisfies these properties.

We will now discuss why this formalization is equivalent to the intuition presented in the
previous section. The property that at least one run of A satisfies (dec-D) and (dec-D) is ex-
pressed in (A) and (B). (A) states that there exist runs where property (dec-D) holds. (B) states
that for every run ρ where property (dec-D) holds, there exists a run ρ′, indistinguishable to the
processes in D, where both properties (dec-D) and (dec-D) hold. Under the assumption that
both (A) and (B) hold, we have that, because ρ exists, so does ρ′ and thus there exists a run ρ′

that satisfies (dec-D) and (dec-D).
The reason why the theorem does not directly state that there are runs where both properties

hold has to do with what the impossibility of solving a problem implies: Recall from the previous
section that we will use the impossibility of consensus in D to derive the impossibility of k-set
agreement in the whole system. Moreover, from the impossibility of consensus we may only
conclude that there exists an execution for D where consensus is not solved. Informally, in
order to “translate” this to an impossibility result for k-set agreement, we need that this very
execution of D happens in a run where we also have k − 1 unique decisions in D. Obviously,
if we did not enforce this somehow, the execution(s) where consensus fails in D might never
coincide with the runs where there are k − 1 unique decisions in D. If we had a guarantee that
all those executions, where the processes of D decide alone, can be extended in such a way that
the processes of D reach k− 1 unique decisions, however, we would be done. Indeed, the BRS-
Theorem provides us with such a guarantee in a formal way by requiring that the runs where
(dec-D) holds are compatible for D with the runs where both (dec-D) and (dec-D) hold.

It remains to investigate the formalization that consensus is impossible in D. In order to
do that, the theorem employs Definition 1. We could express that solving consensus using A is
impossible on the subset D simply by stating that consensus is impossible inM′ =

〈
D
〉
, which

is property (C) of the theorem. However, this is not sufficient because it only states that when
consideringD in isolation (without the processes Π\D being present), consensus is impossible:
In particular it does not exclude that the other processes might influence the processes in D
via the system’s synchrony conditions when running A on M = 〈Π〉 in such a way that the
processes in D are able to solve consensus.

The impossibility of consensus when runningA|D onM′ means that the set of all executions
of A|D on M′, denoted M′A|D

, contains at least one execution ρ′ where some constraint of
consensus is not met. If we could somehow guarantee that in the set of all executions of A on
the larger systemM, denotedMA, there is one execution ρ that is indistinguishable from ρ′ to
the processes of D, we would be done: The processes that violate consensus in ρ′ do so in ρ
because they don’t see a difference between ρ and ρ′. The theorem enforces this by property (D),
which states that all executions of M′A|D

have one execution in MA that is indistinguishable

for the processes in D.
Additionally, property (D) reveals an interesting approach that addresses the problems that

arise when dealing with system models 〈Π〉 and models of subsystems
〈
D
〉

with D ⊂ Π. When〈
D
〉

imposes some property on the executions of all algorithms (e.g. it makes consensus im-
possible), how can we transfer those executions to the larger system 〈Π〉? The issue at hand
is that a consensus algorithm might include some state transitions that depend on the system

20

D1

p1 p2

p3

D2

p4

p5 p6
D

p7 p8

p9 p10

Figure 3.2: With up to f = 7 crash failures, all but the processes in D1 or, alternatively, all but
the processes in D2 may crash. Another possibility is that all the processes in D1 and D2 plus
one process in D may crash.

size; for an impossibility result, however, we want a predicate about any algorithm and there-
fore it would severely weaken the result when we state that the algorithm must not have any
such dependencies. A solution for this somewhat intricate problem is revealed in the precise
formulation of (D): We pick an arbitrary algorithm A for 〈Π〉 and construct A|D by restricting
A to the processes of D. By Definition 1, this implies that in A|D no messages are sent to any
process outside ofD. In the next step, we run this restricted algorithmA|D on the smaller model〈
D
〉
, which is possible because in A|D messages are only sent to processes in D. The remain-

ing step is to prove that all runs of A|D on
〈
D
〉

have “matching” runs of A on 〈Π〉, which are
indistinguishable for the processes of D. This is expressed in a compact way by saying that the
former are compatible with the latter, according to Definition 2. Once we are able to establish
this compatibility, we indeed know that when the smaller model allows us to enforce properties
on executions on any algorithm, including A|D, then there exist executions of some algorithm
on 〈Π〉, namely executions of A itself, where the processes of D exhibit the same behavior.

Apart from its significance for the BRS-Theorem, this is a very useful method when dealing
with models of subsystems; we will make use of it again in Section 4.4.

3.3 Synchronous Processes with Asynchronous Messages

[8, Section 4] describes the application of the BRS-Theorem to a system with synchronous
(and hence also asynchronous, c.f. Section 2.3) processes that communicate via asynchronous
message passing. The number of allowed crash failures f is defined via the requirement

k ≤ n− 1

n− f
(3.1)

This failure assumption enables us to create a partitioning where one of the following failure
patterns may occur in every run:

1. All processes of Π \Dj crash for some j, 1 ≤ j < k.

21

2. All processes of Π \D crash and at least one process inside the partition D crashes.

A detailed proof of this statement can be found in [8, Theorem 2]; we illustrate it for the special
case n = 10 and k = 3 in Figure 3.2. Note that for these values of n and k, the failure bound
(3.1) implies we may have at least up to f = 7 crash failures.

By the asynchronous communication assumption, we may create runs where the messages
between partitions are delayed arbitrarily long. Moreover, the processes of a partitionDj cannot
wait for messages from any process p ∈ Π \Dj , because p may have crashed according to the
failure assumption. Thus, using unique proposal values xi for each process pi and delaying the
messages accordingly leads to runsR(D,D) that satisfy properties (A) and (B) of the theorem.

As the failure assumption allows at least one crash failure inside ofD in every run, consensus
is impossible inM′ =

〈
D
〉

according to the FLP-result from [27]. Thereby, property (C) of the
BRS-Theorem is also satisfied.

The remaining property (D) can be obtained by noting that the failure assumption supplies
us with admissible runs ofMA where all processes of Π \D are initially dead. These runs are
obviously indistinguishable for the processes of D from the runsM′A|D

where the processes in

D don’t receive any messages and any messages sent are only delivered to processes in D.
We have hereby established conditions (A) - (D) of the BRS-Theorem. Note that we were

able to derive the conditions merely by exploiting the asynchrony of the messages and the failure
assumption (3.1), not depending on a specific algorithm in any way. We can therefore conclude
from the application of the BRS-Theorem that solving k-set agreement in a system with syn-
chronous processes, asynchronous messages and the failure bound (3.1) is impossible.

3.4 Wait-free k-Set Agreement with (Σk,Ωk)

A more involved result, namely the impossibility of k-set agreement in a system with up to
(n − 1) crash failures and failure detector (Σk,Ωk), is obtained by another application of the
BRS-Theorem in [8, Section 6].

The Failure Detector (Σ′k,Ω
′
k)

(Σ′k,Ω
′
k) is the partition failure detector from [8, Definition 6]. The history of (Σ′k,Ω

′
k) is called

a partitioning history and because (Σ′k,Ω
′
k) is a combined failure detector, this history consists

of a pair of values. While the value for Ω′k is simply a legal history of Ωk, the value Σ′k is in
essence a version of Σk that respects a partitioning: For every partition Di, 1 ≤ i ≤ k, the
history of Σ′k at every correct process in Di is a legal history of Σ = Σ1 for the restricted model
Mi = 〈Di〉. Additionally, once a process crashes, its history becomes the whole set Π rather
than only the set of processes in its partition.

Comparing (Σk,Ωk) and (Σ′k,Ω
′
k)

Recall that when we have an impossibility result for a failure detector D′ and D ≤ D′, then the
impossibility also holds for D. Since we want to show an impossibility for (Σk,Ωk), it suffices
to show it for (Σ′k,Ω

′
k) provided (Σk,Ωk) ≤ (Σ′k,Ω

′
k) holds.

22

Showing (Σk,Ωk) ≤ (Σ′k,Ω
′
k) can be reduced to showing that Σ′k satisfies the properties of

Σk because, by the definition of (Σ′k,Ω
′
k), we have Ω′k = Ωk.

Recall the definition of Σk from Section 2.5. Now, pick any k + 1 processes and examine
their values for Σ′k. As we have already observed, the liveness properties of Σ and Σk are
identical, thus the liveness property of Σk is obviously satisfied by Σ′k.

It remains to investigate the intersection property. Because we have only k partitions, any
set of k + 1 processes includes at least two processes from the same partition. Their histories
have, by the intersection property of Σ, at least one common element. Thus, we have that any
set of k + 1 processes contains two processes with at least one common element in their values
for Σ′k, which matches precisely the definition of Σk.

Combining independent executions

Our goal is now to apply the BRS-Theorem in order to show that wait-free k-set agreement
with (Σ′k,Ω

′
k) is impossible. In order to do so, however, we first require some results justifying

the use of partitioning arguments in the presence of (Σ′k,Ω
′
k). As partitioning arguments rely

on considering executions for isolated sets of processes, we must show that (Σ′k,Ω
′
k) does not

provide some information about the situation outside a partition to nodes inside a partition in
such a way that prohibits us from regarding them as isolated for our purposes. While the rigorous
proofs for this fact can be found in [8, Lemma 6 and 7], we will provide only the basic idea here.

D D1 D2

β:

α: . . .

. . .

D D1 D2

Figure 3.3: Given two executions α and β, where the nodes in D decide in isolation, can we
replace the execution of D in β by D from α, resulting in some execution β′, without the nodes
in D noticing a difference?

We need two results: First, in a partitioned run β where the processes of a partitionD decide
isolated from the nodes of the other partitions, we want to be able to replace the execution of D
in β with another execution of D in α, resulting in an execution β′. Moreover, the nodes of D
should be unable to notice whether they are in α or in β′ (Figure 3.3).
It turns out that such a replacement is indeed possible by letting D in β′ receive the same mes-
sages, exhibit the same failure pattern, and see the same failure detector history as in α until

23

every correct process has decided in α and β. They key argument here is that we can do this
because the history for D is not influenced by any process outside of D as, by definition of
(Σ′k,Ω

′
k), Σ′k respects only a quorum from the partition D. Moreover, the history of Ω′k at some

process is independent of the history of Ω′k at another process until tGST, which we define as
some time instant after every correct process has decided in α and β. After tGST, we set the
output of Ω′k in β′ to a set LD with LD ∩ (Π \ Fβ′) 6= ∅ in order to guarantee the (Eventual
Leadership) property of Ω′k in β′.

D1

α1

D2

α2

D3

α3

Figure 3.4: Given execution α1 where all processes not inD1 are dead initially (and analogously
for α2, α3), can we combine them to an admissible execution α = α1 ◦ α2 ◦ α3?

Second, we need to show that we can combine executions α1, α2, . . . of isolated partitions
in a way that yields an admissible execution α for the entire system (Figure 3.4). With the
reasoning from the previous point in mind, we can conclude that this is possible when we let
α1, α2, . . . run simultaneously with the same failure patterns, message deliveries and failure
detector histories for the respective partitions. Additionally, we delay the messages between the
partitions until every correct process has decided. We choose as the history of Σ′k in α the union
of the histories Σ′k in the isolated executions αi. Finally, we define tGST for Ω′k in α as some
time instant after all correct processes have decided and set the history of Ω′k after tGST in α to
a set LD with LD ∩ (Π \ F) 6= ∅.

Applying the BRS-Theorem

We now show that we can establish the four conditions of the BRS-theorem when solving k-set
agreement in asynchronous systems with failure detector (Σ′k,Ω

′
k) for 2 ≤ k ≤ n − 2. We use

the partitioning Di = {pi} for 1 ≤ i < k and D = {pk, . . . , pn}.

(A) R(D) is nonempty:
Because we are allowed up to n−1 crash failures, the execution where all but the processes
in D are initially dead, is admissible.

(B) R(D) 4D R(D,D):
As indicated by the explanations throughout this section, we can combine executions of
single partitions, yielding a run β ∈ R(D,D). In such a run β, we may replace the execu-
tion of the processes in D by the execution of the processes of D in α, yielding some run

β′ ∈ R(D,D) with α D∼ β′.

(C) Consensus is impossible inM′ =
〈
D
〉
:

Note that since we are only interested in 2 ≤ k ≤ n − 2, we have, because D =

24

{pk, . . . , pn}, |D| ≥ 3. We are interested in the restricted model M′ =
〈
D
〉

and need
to investigate what failure detector is available to the processes inM′. By |D| ≥ 3 and
the definition of (Σ′k,Ω

′
k), the strongest failure detector that is possibly accessible inM′

is (Σ,Γ), where Γ outputs arbitrary processes during its anarchy period until it stabilizes.
After stabilization, Γ outputs the same constant set LD, containing at least one correct
process, with |LD ∩D| = 2.

We observe that Γ is equivalent to Ω2: We remove the processes not in D from the output
of Ω′k at any process in D, and add processes arbitrarily from that D in order to arrive
at Γ. Note that Γ eventually contains at least one correct process ∈ D since Ω′k does so.
Because (Σ,Ω2) is strictly weaker than (Σ,Ω) (cf. [28, 37]) and (Σ,Ω) is the weakest
failure detector for solving wait-free consensus [29], consensus is impossible inM′.

(D) M′A|D|
4DMA:

Take any run ρ ∈ M′A|D|
. As we have seen from the arguments made throughout this

section — in particular, regarding the partitioning property of the history of (Σ′k,Ω
′
k) —

it is possible to find a run ρ′ ∈ MA where the processes in D are initially dead and the
processes in ρ′ make the same state transitions as in ρ.

This successful application of the BRS-theorem, in conjunction with the relation (Σk,Ωk) ≤
(Σ′k,Ω

′
k), yields the impossibility of wait-free k-set agreement in asynchronous message pass-

ing systems with failure detector (Σk,Ωk). Together with the possibility of 1-set agreement
(consensus) with (Σ1,Ω1) [28] and (n− 1)-set agreement with (Σn−1,Ωn−1) [13] we have the
following corollary:

Corollary 1 (From [8, Corollary 2]). There is an (n − 1)-resilient algorithm that solves k-set
agreement with failure detector class (Σk,Ωk)1≤k≤n−1 in an asynchronous system, if and only
if k = 1 or k = n− 1.

3.5 The Search for a Weakest Failure Detector for Message
Passing k-Set Agreement

In Corollary 1, we have seen that the failure detector (Σk,Ωk)is too weak to solve general k-set
agreement in message passing systems for 1 < k < n−1. In an attempt to find a failure detector
that enables solving k-set agreement in message passing system, the (n−k)-loneliness detector
Lk was introduced in [11]. In contrast to the previously mentioned failure detectors, Lk supplies
a boolean variable. This variable is FALSE at n−k processes at all times, while it becomes TRUE

at a correct process in the event that k or more processes are faulty. Thereby, it detects the case
where n− k or less processes are “lonely”, allowing an algorithm to potentially circumvent the
impossibility for this scenario. Lk is formally defined as follows:

Definition 3 ([11, Definition 1]). The (n − k)-loneliness detector Lk outputs TRUE or FALSE,
such that for all environments E and ∀F ∈ E it holds that there is a set of processes Π0 ⊆

25

Π, |Π0| = n− k and a correct process q such that:

∀p ∈ Π0∀t : H(p, t) = FALSE (3.2)

|F | ≥ k ⇒ ∃t∀t′ ≥ t : H(q, t′) = TRUE (3.3)

Although an algorithm exists that uses Lk in order to solve k-set agreement in message
passing systems [11], it has been shown that Lk is not the weakest failure detector for this
problem. But how does Lk compare directly to (Σk,Ωk)? Recently, this question has been
answered, as failure detector Xk that is stronger than Ωk was presented in [36]. It has the
following interesting property: (Σk, Xk) is equivalent to Lk.

While Σk allows the system to partition it at most k parts, it is the conjunction of Σk and
Xk that provides a perpetual property that allows us to solve consensus in these partitions. In
contrast, we have seen in the previous section that Ωk is not strong enough to solve consensus in
every partition.

Obviously, another failure detector that is (slightly) stronger than Ωk but weaker than Xk

would be a promising candidate for the still unknown weakest failure detector for k-set agree-
ment in message passing systems for 1 < k < n−1. The BRS-Theorem seems to be a promising
tool for supporting this endeavor, as it is tailored to exactly these kinds of models and abstracts
away from the complexities involved when proving impossibilities in such settings. Following
this road will be an important direction for further research.

26

CHAPTER 4
Directed Dynamic Networks

In this chapter, we investigate k-set agreement in systems with highly dynamic communication.
Such scenarios occur e.g. in wireless networks, where a node p may be reachable from a node
q only via intermediate nodes for a certain period, or even worse be disconnected entirely for
some time. We first present a model for such networks where communication is according to
a sequence of round-by round graphs and discuss some known results regarding the solvability
of consensus in this model. Subsequently, we show fundamental limitations to which nodes in
these dynamic systems are subject to and present some new results regarding the impossibility
of k-set agreement in those systems.

4.1 Model Overview

In the directed dynamic network (DDN) model from [10], processes are synchronous and op-
erate in lock-step rounds, while communication is modeled via a sequence of round-by-round
communication graphs Gr, r ≥ 1. The round r communication graph Gr = 〈V r, Er〉 is a di-
rected graph, consisting of a set of nodes V r and a set of edges Er. For simplicity we write
p ∈ Gr instead of p ∈ V r and (p → q) ∈ Gr instead of (p → q) ∈ Er. Each process p ∈ Π
corresponds to a node of the same name p ∈ Gr. An edge (p → q) is in Gr if and only if p can
send a message to q in round r. Messages in this model are confined to communication closed
rounds, i.e. a message sent in round r may only be received in round r.

Since our algorithms are synchronous and deterministic, this implies that, for a certain al-
gorithm and initial configuration, each execution is uniquely determined by the sequence of
communication graphs for each round.

A central aspect of the DDN model are root components. A round r root component is a
strongly connected componentRr, where no node has an incoming edge from a node that is not
inRr.

27

Definition 4 (From [10, Section 4]). We call a strongly connected componentRr a round r root
component if
∀p ∈ Rr ∀q ∈ Gr : (q → p) ∈ Gr ⇒ q ∈ Rr

A property of the communication graph especially important for k-set agreement is the max-
imum number of root components Gr contains. Consider for example the case, where each Gr
may contain more than k root components. In this instance we may construct an execution where
each round-by round communication graph contains the same k + 1 nodes as single-node root
components. When starting from an initial configuration where each process holds a unique in-
put value, the k+1 processes that constitute the k+1 root components must, by the termination
condition, decide eventually. Because as root components they never received any messages,
they must decide on their own input value. This leaves us with k + 1 distinct decision values
which violates the safety property k-agreement. Thus we have found an execution where every
k-set agreement algorithm fails to solve the problem and thereby shown that k-set agreement
is impossible in the DDN model if the communication graph is allowed to contain more than k
root components. Note that this implies the impossibility of consensus with more than a single
root component.

We will now introduce two concepts that enable a precise reasoning about DDNs, followed
by a theorem which establishes an impossibility of consensus in DDNs on which we will rely
subsequently.

First, we consider root components that last for multiple rounds (c.f. [10, Section 4]). Let
I = [ri, ri+l] be the interval of rounds of length l + 1 = |I|, which spans from the beginning of
round ri to the end of round ri+l. We call a root component RI I-vertex stable if the processes
in RI form a root component in all rounds of I . Note that this includes the possibility that the
topology ofRri changes during I , as long as the nodes inRri remain a root component.

Second, we introduce influence chains (c.f. [10, Section 3.3]). A node p is said to influence
a node q in round r, in symbols p r

 q, if q received a message from p in round r, i.e. if
(p→ q) ∈ Gr or if p = q (we assume that nodes receive their own messages).
We say that there is a causal influence chain of length l from p to q which starts in round r,

in symbols (p
r[l]
 q), if there exists a sequence of l + 1 (not necessarily distinct) processes

p = p0, . . . , pl = q such that (pi
r+i
 pi+1), 0 ≤ i < l. Intuitively, (p

r[l]
 q) corresponds to a

path through G[r,r+l] from p to q, where in each round we stay at the same node or move along
one outgoing edge.
We can now define the causal distance cdr(p, q), which is the length of the shortest causal

influence chain from p to q that starts in round r: cdr(p, q) := min{l | (p r[l] q)}.
The following impossibility result states that consensus is impossible in a system with a

single root even if it is vertex-stable for an interval of length D and there is just one process
which is so far away from the root that it can receive not a message from the root within D
rounds.

Assumption 1 (from [10, Assumption 4]). For any round r, there is exactly one root component
Rr in Gr. Moreover, there exists a D and an interval of rounds I = [rST , rST +D − 1], such

28

that there is an I-vertex stable root component RI , and there exists a unique q ∈ Π such that
∀p ∈ RI , ∀r ∈ I : cdr(p, q) ≤ D + 1, while for all q′ ∈ Π \ {q} we have ∀p ∈ RI ,∀r ∈
I : cdr(p, q′) ≤ D.

Theorem 2 (from [10, Theorem 5]). Assume that Assumption 1 is the only requirement for the
graph topologies. Then consensus is impossible.

Theorem 2 gives a lower bound on the duration a root component must remain stable in order
for consensus to (potentially) be solvable. It states that if it takes D rounds for a message from
any process of the root component to reach some unique process q, then consensus cannot be
solved if the root component is stable for merelyD−1 rounds. Note that the proof of Theorem 2
actually implies that even if there are multiple distinct roots, each stable for less than D rounds
in a single run, consensus cannot be solved.

Informally, this impossibility of binary consensus (and hence consensus) under Assump-
tion 1 results from the following fact: In a system adhering to the DDN model that satisfies only
Assumption 1, two univalent round r configurations C ′ and C ′′ that differ only in the state of a
single process p cannot have a different valence (cf. [10, Lemma 16]). This is the case because,
under Assumption 1, there are configurations reachable from both C ′ and C ′′, by a distinct se-
quence of round graphs, where some process q decides without knowledge of the state of p –
and thus on the same value. The following cases illustrate this:

1. If p is part of the root componentRI , Assumption 1 allows us to find some q which is not
influenced by p (particularly if r ∈ I). When the sequence of round graphs is such that q
becomes a single node root component in all rounds after I ends, q will eventually decide
independent of p’s state.

2. If p is not part of the root componentRI and some q that is part of the root component in
round r becomes the single node root component in all subsequent round graphs, q will
decide eventually, independent of p’s state.

The fact that the state of a single process cannot determine whether a configuration is 0-
valent or 1-valent implies that when two configurations differ only in the state of a single pro-
cess, either both of them have the same valence or one of them is bivalent. This in turn allows
us to show the existence of an execution that never terminates, by staying bivalent forever, as
described subsequently. First, it is shown that a bivalent initial configuration exists, followed by
a justification why every bivalent configuration has a bivalent successor configuration.

A bivalent initial configuration exists, because from the (by validity) 0-valent initial config-
uration where all proposal values xi = 0, by subsequently setting one proposal value to 1, we
will eventually reach the (by validity) 1-valent initial configuration where all proposal values are
1. Therefore, at some point, the valence of the configuration changes when setting a proposal
value of a single process. As the change of a single proposal value in an initial configuration
is equivalent to the change of the state of a single process in this configuration, by the previous
argumentation, it is impossible that the change occurs from 0-valent to 1-valent. Hence it must
occur from 0-valent to bivalent (and some point from bivalent to 1-valent), which confirms the
existence of a bivalent initial configuration.

29

Every bivalent round r configuration C has a bivalent successor configuration for a similar
reason: As we have already mentioned, in the DDN model, since computations are determin-
istic, given some configuration C, we may uniquely determine a successor configuration by its
corresponding round graph. We proceed by assuming, for the purpose of deriving a contradic-
tion, that all successor configurations of C are univalent. By the bivalence of C, there must
be a successor configuration of C that resulted by applying some communication graph G′, de-
noted C(G′), that is 0-valent and some successor configuration C(G′′) that is 1-valent. The key
argument is that one can construct a sequence of graphs G′ = G0,G1, . . . ,Gk = G′′ when Gi
and Gi+1 for 0 ≤ i < k differ in a single edge only, which is known as connectedness of the
successor graphs: We can incrementally add an edge to G′, first by merging the root components
of G′ and G′′ and subsequently adding the remaining edges, to arrive at G′ ∪ G′′. Then we may
incrementally remove edges from G′∪G′′, first by shrinking the root of G′∪G′′ and subsequently
removing the remaining edges, to arrive at G′′.

Since we assumed that C(G′) is 0-valent and C(G′′) is 1-valent, at some point in this se-
quence, the round graphs Gi and Gi+1 must have caused a valency switch in the corresponding
configurations C(Gi) and C(Gi+1). Since we know that this switch could not have been from
0-valent to 1-valent, because the two respective configurations differ only in the state of a single
process (which is equivalent to a single edge in the communication graph), it must have been
from 0-valent to bivalent.

4.2 Impossibility of Consensus with Lossy Links

The DDN model allows us to express link failures in a precise manner: From the point of view
of a process p we have that p may call the message sending function in order to send a message
to another process q in round r but if there is no edge (p→ q) in Gr, the message simply won’t
be delivered. This behavior can be characterized as a lossy link and for this reason we will repeat
a theorem about the impossibility of consensus in two-process systems with lossy links, which
will prove very useful in the subsequent section.

The well-known Gray’s Theorem [30] states that it is impossible to solve the coordinated
attack problem, which is very similar to consensus, in a two-process system with arbitrarily
lossy links. A generalization of Gray’s theorem has been introduced in [44]. We show that this
result is also valid in the DDN model:

Theorem 3. There is no deterministic algorithm that solves consensus in the DDN model with
two processes connected by a lossy link, even if communication is reliable in one direction in
every round.

Proof. Similar to the strategy used in [44] to show the undecidability with lossy links, our proof
proceeds by induction.

For the base case consider the initial configuration C1(x1, x2), where p1 starts with initial
value x1 and p2 starts with x2 and x1 6= x2. Assume that C1(x1, x2) is univalent. By Validity
the only possible decision values in runs starting from this initial configuration are x1 and x2.
In order to see that C1(x1, x2) is neither x1-valent nor x2-valent (and hence bivalent) we show
that C1(x1, x2) is not x1-valent (the case of x2-valency follows from the symmetric argument).

30

Consider a run starting from C1(x1, x2) where ∀r > 0: (p1 → p2) /∈ Gr. This run is indistin-
guishable to p2 from a run with the same communication graphs but starting from C1(x′, x2),
with x′ 6= x1. By Validity p2 cannot decide x1 in the latter run, showing that C1(x1, x2) cannot
be x1-valent.

For the inductive step, we show that if Cr−1 is bivalent then there is a bivalent successor
configuration Cr of Cr−1 that is bivalent.

Assume that all Cr are univalent. As the successor configurations of Cr−1 are uniquely
determined by the round graph Gr−1 and because of the assumption that there is a single root
component, we need to consider only three successor configurations. Let Cr01 be the succes-
sor configuration of Cr−1 that is reached by the Gr−1 with Er−1 = {(p1 → p2)}, let Cr10 be
the successor configuration of Cr−1 that is reached by the Gr−1 with Er−1 = {(p1 ← p2)},
and let Cr11 be the successor configuration of Cr−1 that is reached by the Gr−1 with Er−1 =
{(p1 → p2), (p1 ← p2)}. As all Cr are univalent, w.l.o.g. assume that Cr11 is x1-valent. Be-
cause Cr−1 is bivalent, at least one of Cr10, C

r
01 must be x2-valent; w.l.o.g. assume that Cr10 is

x2-valent. Note that the only difference between Cr11 and Cr10 is that p2 received p1’s message
in the former but not in the latter. Consider now the executions starting from Cr10, respectively
Cr11, where it holds that ∀r′ > r : (p1 ← p2) /∈ Gr′ . Both executions are indistinguishable
for p1 because p2 can never tell p1 whether p2 received p1’s round r′ message. Since p1 must
eventually decide the same in both executions, they cannot have different valences.

It is important to note that if the pattern of link failures is known in advance to the algorithm,
then it is possible to solve consensus when communication is reliable in one direction every
round. Moreover, for Theorem 3 to hold, it is required that the successor graphs are connected,
i.e., that the possible communication patterns for each round are from a set of directed graphs
where for each graph H in this set there is another graph J in this set such that H and J differ
only in one edge. A rigorous notation of “withholding information”, which captures the required
properties can be found in [44]. The key issue to note here is that the uncertainty of the link
failure pattern makes it possible for the adversary to force an execution that does not terminate,
for any algorithm.

Using Theorem 3 as well as the notion of restrictions of algorithms and compatibility of
runs from Definitions 1 and 2, we are now able to prove the impossibility of consensus in the
DDN-model with moving root components.

Theorem 4. Consensus is impossible in the DDN model for n ≥ 2 if the communication graph
contains a single root component that may move arbitrarily in every round.

Proof. For the purpose of deriving a contradiction, assume that an algorithmA exists that solves
consensus under these assumptions. Let D = {p, q} ⊆ Π, letM′ = 〈D〉 and letM′A|D

be the
set of runs of A|D onM′. Consider the runs H of A on 〈Π〉, where for the root component Rr
in every round r > 0, it holds that Rr ⊆ {p, q}. By the assumptions of the theorem, H is non-
empty. Observe thatM′A|D

4D H holds: Since, in H, neither p nor q ever receive a message

from a process of Π\D, it is easy to find for any ρ ∈M′A|D
a matching run ρ′ ∈ H s.t. ρ D∼ ρ′ is

established. By Theorem 3,M′A|D
contains at least one run σ such that consensus is not solved

31

in σ. Thus, by the compatibility of M′A|D
4D H, the set of runs H, and thereby the set of

runs of A on 〈Π〉, contains a run where consensus is not solved in D. Since A solves consensus
system-wide, it also solves consensus among the processes of D – a contradiction.

Note that Theorem 4 could also have been immediately derived from Theorem 2: After all,
not having to have a root component that is vertex-stable for more than a single round at all is
weaker than Assumption 1. Therefore, Theorem 2 is also applicable in this case. This is not
surprising: Theorem 2 internally relies on an equivalent argument as Theorem 3, on which in
turn Theorem 4 is based. Nevertheless, the proof of Theorem 4 shows how we can directly
reduce the impossibility of consensus in a larger system in the DDN setting to the impossibility
of consensus in a small system.

We have now provided all the impossibilities for consensus on which we rely on in the sub-
sequent sections, where we provide some new results about the impossibility of k-set agreement
in directed dynamic networks.

4.3 Necessity of Simultaneously Static Root Components for k-Set
Agreement

The results from the next two sections have been devised in collaboration with Manfred Schwarz,
hence can be found in a somewhat different form also in his Master’s thesis [45] (and in a joint
publication [46] that is currently under review). The latter also presents assumptions that suffice
to solve k-set agreement in the DDN model as well as an according algorithm.

The first assumption we introduce in our model to exclude trivial impossibilities, as dis-
cussed in Section 4.1, is a restriction on the total number of root components per round:

Assumption 2. ∀r > 0, Gr contains at most k root components.

We now use the BRS-Theorem to show that, in order to solve k-set agreement, it does not
suffice to have k root components simultaneously for only one round. The following theorem
shows that k root components need to be static for some time, in order to be able to solve k-set
agreement.

Theorem 5. There exists no algorithm that solves k-set agreement in the directed dynamic
network model with n > k nodes and k root components, if one of the k root components may
change arbitrarily every round.

Proof. Suppose that there is a k-set algorithm A that works correctly under the assumptions of
our theorem. We will prove that the conditions of the BRS-Theorem (Theorem 1) are satisfied,
thereby providing a contradiction to the assumption thatA exists. LetDi = pi for 0 < i ≤ k−1
and let D =

⋃k−1
i=1 Di. Consequently, D = {pk, pk+1, . . . , pn} and |D| ≥ 2.

(A) R(D) is nonempty:
In order to create an execution where the processes inD do not receive any messages from
the processes ofD, we let the communication graph in every round not have any incoming
links to D from D until every process in D has decided. Clearly such a sequence of

32

communication graphs constitutes an admissible execution, as it satisfies the assumptions
of the theorem. This establishesR(D) 6= ∅.

(B) R(D) 4D R(D,D):
Let H be the set of runs where processes pi have unique input values xi = i, 0 < i < k,
the communication graph in every round is such that p1, . . . , pk−1 are disconnected, and
pk, . . . , pn are weakly connected until every process has decided. By the assumptions of
our theorem,H is non-empty.
Since the processes of D never receive a message from a process of D in both R(D) and
H and, moreover, the initial values of D are not restricted in H in any way, it is easy to

find for any run ρ ∈ R(D) a run ρ′ ∈ H, s.t. ρ D∼ ρ′.
Because obviouslyH ⊆ R(D,D), we have establishedR(D) 4D R(D,D).

(C) Consensus is impossible inM′ =
〈
D
〉
:

We let the processes inD be weakly connected and have one root component inD in each
round. Because |D| ≥ 2, we may have a moving root component every round, so the
processes of D solving consensus would be a contradiction to Theorem 4.

(D) M′A|D|
4DMA:

Fix any run ρ′ ∈ M′A|D|
and consider the run ρ ∈ MA where every process in D has the

same sequence of states in ρ as in ρ′. By the properties ofM, the processes in D can be

disconnected in every round of ρ, yielding ρ D∼ ρ′.

When examining what we did in Theorem 5 more closely, we find that the communication
graph always allows us to make the partitioning, as required by the BRS-Theorem, under the
assumption that we may have up to k root components. This is interesting, because it means
that applying the BRS-Theorem in this setting can be reduced to finding the impossibility for
consensus in D. In other words, when we have an impossibility for consensus for n−k+ 1 pro-
cesses and Assumption 2 is the only assumption that holds in our system, we may immediately
infer an impossibility for k-set agreement by referencing the BRS-Theorem. For instance, we
may use Theorem 2 to further strengthen Theorem 5 for n > k + 1:

Theorem 6. There exists no algorithm that solves k-set agreement with n > k + 1 processes
under Assumption 2, for any 1 ≤ k < n, even if there are k − 1 root components R1 to Rk−1
that are vertex-stable forever and one root component Rk is vertex-stable for at most n− k − 1
rounds.

Proof. For k = 1, Theorem 6 is equivalent to Theorem 2 forD = n−k−1 = n−2. To prove the
theorem for k > 1, we show again that the conditions of the BRS-Theorem (Theorem 1) apply.
As the system model is the same as in the proof of Theorem 5, we use the same partitioning once
again. Thus, the proof of conditions (A), (B) and (D) remains unchanged and it suffices to show
that condition (C) is satisfied:
(C) Consensus is impossible inM′ =

〈
D
〉
: Recall that D is the partition of the kth root com-

ponentRk, which is perpetually changing every round, except for some interval of rounds

33

I = [rST , rST + `− 1], where ` = n − k − 1, for some fixed rST . During this inter-
val, let the topology of D be such that there exists some p ∈ Rk and some q ∈ D with
cdrST (p, q) = n − k. Since |D| = n − k + 1, such a topology (e.g. a chain with head
p and tail q) adhering to the conditions of Theorem 2 for D = n − k − 1 exists. Hence,
consensus is impossible in D.

4.4 Impossibility of k-Set Agreement with Decision Hiding

By applying the BRS-Theorem to the DDN model, Theorem 5 and Theorem 6 established that
we need k root components that hold simultaneously for a certain interval in order to solve k-
set agreement. It is not trivial to find a tight lower bound for how long these root components
must hold for k-set agreement to become solvable. Despite this, an algorithm that solves k-set
agreement should certainly exist when the root components are guaranteed to be stable for a very
long period of time. Does this mean that if, after some global stabilization round rGST, there
exist k static simultaneous root components forever, k-set agreement is always solvable? Maybe
surprisingly, without additional restrictions, this is not generally the case. The reasons for this
will be examined in the following Theorem 7, which shows that it is possible to construct an
execution where the safety property k-agreement is violated.

Theorem 7. Suppose that in every run there is a stabilization round rGST such that, for all
r ≥ rGST, it holds that Gr = Gr+1 and there are no other restrictions on the communication
graphs apart from Assumption 2. Then, there is no algorithm that solves k-set agreement for
1 < k < n.

Proof. We start our proof with some notation and technical lemmas. For some modelM and
some algorithm A, we denote by MA the set of runs of algorithm A on M. Let M = 〈Π〉
be our system with |Π| > 2 that is restricted by the assumptions of the theorem, and let D =
{p1, p2} ⊆ Π. We consider the restricted modelM′ = 〈D〉 and the restricted algorithm A|D
of algorithm A on D. Except for the number of processes,M′ has the same properties asM,
except thatM′ guarantees a single root component in every round.

Following the general idea of the BRS-Theorem (Theorem 1), we will argue that if there
was a correct k-set agreement algorithm A for M, then the restriction A|D would solve con-
sensus when being run on M′: Since the assumption of k root components per round allows
Gr to partition into k isolated partitions with a single root each (subsequently referred to as root
partitions), there are executions inMA where the processes in D receive no messages from any
process outside of D, and decide on a unique value value in every root partition. On the other
hand, when executingA|D onM′, the processes ofD clearly also receive no messages from any
process of Π\D. Thus, the processes of D cannot distinguish whether they executeA|D onM′
orA onM, and must hence also agree on a single value. Note that, because n = |D| = 2 inM′,
we can re-use classic bivalency arguments since there are at most two initial values (although
we assume |V | > k for k-set agreement, as usual).

We commence the proof by establishing the following technical lemmas.

34

Lemma 1. For every k-set agreement algorithm A forM, there exists a run ρ′ ∈M′A|D
that is

bivalent for all rounds up to and including rGST.

Proof. Since |M′| = 2, solving non-trivial k-set agreement inM′ corresponds to solving con-
sensus in M′. The existence of a bivalent run follows immediately from the proof of Theo-
rem 3.

Lemma 2. For every k-set agreement algorithm A forM, the set of runs R ⊆ MA where Gr
contains arbitrary outgoing edges from D but no incoming edges to D satisfiesM′A|D

4D R.

Proof. By the assumptions of R, the processes in D never receive messages from any process
of Π \D. Therefore, in any run of R, the state transitions of the processes in D cannot depend
on the state of any process of Π \D. This establishesM′A|D

4D R.

{p1,p2,p3}:

1 root,
“perpetually

bivalent”

1 root,
“perpetually

bivalent”

bivalent
1 static root

bivalent
1 decision

1 decision
1 decision

Π \ {p1,p2,p3}:

k − 1
static roots

k − 1
static roots,
k − 1

decisions

k − 2
static roots,
k − 1

decisions

k − 1
decisions

k − 1
decisions

round 0 x y rGST

Figure 4.1: Overview of the proof of Theorem 7.

We are now ready to prove Theorem 7. Our proof relies on an execution, where every k-set
agreement algorithm with n > 2 and 1 < k < n − 1 produces k + 1 decisions. The run is
constructed as follows (cf. Fig. 4.1 for an overview): For each pi, we choose a unique proposal
value xi such that x1 and x2 are in accordance with Lemma 1. For the rounds 1 ≤ r ≤ x, where
x is chosen as described below, we use a graph Gr constructed as follows (cf. Fig. 4.2a):

• p1, p2 are connected to each other as in the bivalent run ρ′ provided by Lemma 1, and have
no incoming edges from any Π \D.

• p3 has an incoming edge only from p1 and no outgoing edges.

• p4, . . . , pk+2 form single-node root components.

35

p1 p2

p3

p4 pk+2. . .

pk+3 . . . pn

(a) One (changing) root component among p1 and
p2, single root p4, k − 2 remaining single-node
root components p5, . . . , pk+1 among p5, . . . , pn.

p1 p2

p3

p4 pk+2. . .

pk+3 . . . pn

(b) One root component among p1 and p2, single
root p3, k− 2 remaining single-node root compo-
nents p5, . . . , pk+1 among p5, . . . , pn.

Figure 4.2: Communication graphs used in the proof of Theorem 7: (a) depicts Gr for 0 < r ≤ x,
while (b) depicts Gr for x < r ≤ y. The dotted edge indicates an unstable (“moving”) link
between p1 and p2.

• The remaining processes (if any) have an incoming edge from p4 but no outgoing edges.

Note that this graph contains one root partition {p1, p2, p3} and k − 1 other root partitions
with singleton root components p4, . . . , pn, thereby satisfying Assumption 2. A simple indistin-
guishability argument shows that there is some finite round x, s.t. processes p4, . . . , pk+2 have
decided on k− 1 distinct values: Just consider the execution where p1 is a perpetual root among
p1, p2, p3 and p4, . . . , pn are as defined above perpetually. Since we assumed a correct algo-
rithm, all processes p4, . . . , pk+2 decide on some value by some round x. To see that there are
k − 1 different decisions, observe that p4, . . . , pk+2 never learn a value that is not their own
initial value, thus this fact follows from validity.

From round x + 1 on, we use a communication graph Gr that is the same as above, except
that the edge from p1 to p3 is removed and an edge from p3 to p4 is added (cf. Fig. 4.2b).
Note carefully that the total number of root components is preserved, and that there are still
no incoming edges to {p1, p2}. Since the resulting execution is admissible inM, by a similar
reasoning as above, there must be some round y s.t. p3 decides by round y; its decision value
must be in {x1, x2, x3}, since p3 can have heard at most from {p1, p2, p3}. Obviously, p1 and
p2 are still undecided.

Finally, it follows from the bivalent configuration of A|D reached by round y, according to
Lemmas 1 and 2, that there exist communication graphs Γ1 resp. Γ2 for all rounds r > y, which
are the same as the graphs used for rounds x < r ≤ y, except that the links between p1 and p2
are chosen such that they both decide on x1 resp. x2. We now continue our execution with Γ2

if p3 decided x1, and with Γ1 otherwise. Obviously, this guarantees that p1, p2 and p3 reach at
least two different decisions.

As we have now reached a total of k+1 decisions, we have established a contradiction. This
completes the proof of Theorem 7.

Theorem 7 reveals that an eventual globally stable interval after round rGST is not enough
to make k-set agreement possible. The reason for this is that already before rGST, (k + 1)
decisions could have been enforced. This is achieved by the possibility to hide decisions from
subsequent root components via rearranging the root components in the system – in essence,
nodes that have already decided cease to have outgoing edges and nodes that never even learned
the proposal value on which this decision is based become roots that must eventually decide on

36

a different value. In this scenario, the BRS-Theorem was not directly applicable (although the
proof is similar in spirit), because property (C) of the BRS-Theorem cannot be established as
the global stability round rGST makes consensus solvable eventually.

37

CHAPTER 5
Predicated Dynamic Networks

5.1 The Predicate Psrcs(k)

In Chapter 4, we investigated the directed dynamic network (DDN) model, where communi-
cation is modeled by means of a sequence of round-by round communication graphs Gr. The
solvability/impossibility results in that chapter are mostly based on the restrictions on root com-
ponents (cf. Definition 4), which are in a way the high-level structural properties of the graph.
It seems worthwhile to investigate if we can find solvability boundaries for k-set agreement in
the DDN model, which do not rely on such high-level assertions, but rather on some compact
low-level predicate on the communication graphs. Ideally, we are looking for a low-level pred-
icate from which we can derive tight impossibilities for k-set agreement. One such predicate,
Psrcs(k), will be the focus of this chapter. It has been found in [9] to be sufficient for solving
k-set agreement in the DDN model.

The predicate is based on the notion of a perpetually timely neighborhood of a process,
which will allow us to define the stable skeleton of the communication graphs in a run, both of
which we will now introduce (for a more detailed description, cf. [9, Section 2]). The round
r perpetually timely neighborhood of a process p, PT(p, r), is the set of those processes that p
heard of, i.e. had an incoming edge from, in every round until r. The round r stable skeletonG∩r

of the communication graph Gr is a graph that contains those edges that were present in Gr in
every round until r; those edges are called the directed timely edges of Gr. The correspondence
between PT(p, r) andG∩r is that a process q is in PT(p, r) if and only if there is an edge (q → p)
in G∩r (for an example, cf. Fig. 5.1).

Going one step further, we define the stable skeleton for a whole execution, G∩∞, as the
intersection of all G∩r. In a similar fashion, we define the perpetually timely neighborhood of
p, PT(p), as the intersection of all PT(p, r) of an execution:

Definition 5 (Perpetually Timely Neighborhood and Stable Skeleton from [9, equation (4)]). Let
PT(p, r) contain those processes, process p received a message from in every round up until and
including round r. Then, the perpetually timely neighborhood of p is defined as

39

p3

p1

p2

p4

G1

p3

p1

p2

p4

G2

p3

p1

p2

p4

G3

p3

p1

p2

p4

G∩3

Figure 5.1: The three communication graphs G1,G2,G3 have the round 3 stable skeleton G∩3.
p1 constitutes both PT(p2, 3) and PT(p3, 3), the round 3 perpetually timely neighborhood of p2
and p3, respectively. PT(p1, 3) and PT(p4, 3) are both empty, while PT(p3, 2) consists of p1 and
p2.

PT(p) :=
⋂
r>0

PT(p, r),

and the stable skeleton graph is
G∩∞ =

⋂
r>0 Gr.

While PT(p) and G∩∞ are always well defined (possibly containing no edge), we will define
predicates that ensure non-trivial stable skeletons. After all, we want to solve non-trivial agree-
ment problems, which is much easier when the stable skeleton is sufficiently well connected.

The predicatePsrcs(k) states that, in every round of an execution, every set of k+1 processes
in the communication graph contains at least two fixed processes q 6= q′ that receive a message
from the same fixed process p. We call p a two-source, as it is a source of messages for at least
two processes. Since we assume that every process receives its own message, it is possible that
q = p or q′ = p (cf. the example depicted in Fig. 5.2).

For the formal definition of Psrcs(k) we first introduce the predicate Psrc(p, S). It states
that p is a perpetual two-source for two nodes in S, i.e. p is a two-source for the same two nodes
q 6= q′ in every round, by stating that p is in their perpetually timely neighborhood PT(.):

Definition 6 ([9, equation 8, line 1]).
Psrc(p, S) :: ∃q, q′ ∈ S, q 6= q′ : p ∈ (PT(q) ∩ PT(q′))

Using this definition we can express Psrcs(k) by stating that Psrcs(p, S) holds for any set S
of size k + 1.

40

p1

p2

p3p4

p5

Figure 5.2: This graph satisfies Psrcs(2) (and hence Psrcs(i) for all i ≥ 2): in every set of 3
or more nodes there are two nodes with an incoming edge from the same node (every node is
considered to have an edge from itself to itself). However it does not satisfy Psrcs(1): e.g. p3
and p5 have no incoming edge from a common node.

Definition 7 ([9, equation 8, line 2]).
Psrcs(k) :: ∀S, |S| = k + 1 ∃p ∈ Π : Psrc(p, S)

We might ask ourselves how precisely Psrcs(k) makes k-set agreement possible, and iden-
tify two important aspects: The first is that we defined Psrcs(k) using the perpetually timely
neighborhoods. This ensures that links that are missing at some point are not considered by the
predicate at all, which essentially implies that at least the stable skeleton satisfies the property of
Psrcs forever. Such a perpetually stable skeleton alleviates the issues that arise when partitions
may withhold information combined with the ability of components to restructure, by merging
old root components and introducing new root components, as discussed in Section 4.4.

The second important aspect is that Psrcs(k) imposes limitations on the amount of root com-
ponents present in the system: Because Psrcs(k) asserts that in every set of k+ 1 processes, two
processes received a message from another process, this implies that there cannot be k + 1 or
more disjoint root components in G∩∞ (cf. [9, Theorem 1]).
Although the predicate Psrcs(k) is far from being the weakest predicate that allows k-set agree-
ment to be solved, it is tight, in the sense that (k−1)-set agreement is impossible when Psrcs(k)
is the only assertion about the system. When investigating this (k − 1)-set agreement impossi-
bility, we find that Psrcs(k) allows us to create a set L of (k − 1) isolated processes and a set of
processes where every process receives messages from some process s /∈ L. When starting with
distinct initial values, the (k− 1) processes in L and s will, by termination, decide on their own
values eventually, leading to k decision values (cf. [9, Theorem 2]).

5.2 Impossibility of k-set agreement with Moving Source

We now ask ourselves how we could weaken the predicate Psrcs(k) while still maintaining
the solvability of k-set agreement. A promising idea might be to use a weaker predicate that
ensures that every set of k + 1 processes contains at least two processes q, q′, which receive

41

a message from the same process pr in every round r. Accordingly, we define the round r
predicate Prsrcs(k):

Definition 8 (Round r variant Prsrcs(k) of Psrcs(k)).
Prsrc(p, S) :: ∃q, q′ ∈ S, q 6= q′ : (p→ q) ∈ Gr ∧ (p→ q′) ∈ Gr
Prsrcs(k) :: ∀S, |S| = k + 1 ∃pr ∈ Π : Prsrc(pr, S)

Note that, as in the original Psrcs(k) predicate, we assume that ∀p ∈ Gr : (p → p) ∈ Gr
and p = q or p = q′ is allowed.

We now show that this predicate is too weak, i.e., that k-set agreement is impossible with
only Prsrcs(k) by applying the BRS-Theorem (Theorem 1).

Theorem 8. Solving k-set agreement is impossible in the two-source model with n > k if the
only restriction is that Prsrcs(k) holds for all rounds r.

Proof. By contradiction. Suppose there exists an algorithm A that solves k-set agreement un-
der these conditions. We show that there exists a communication graph sequence such that A
satisfies the conditions of the BRS-Theorem. Note that n > k enables us to make the following
partitioning:

Fix Di in such a way that |Di| ≥ 1 for 0 < i < k and fix D in such a way that |D| = 2.
We choose the communication graph in each round such that the processes ofDi, 0 < i < k, are
strongly connected and the processes in D are weakly connected, while there is no connection
between the processes of any two partitions.

First, we establish that this partitioning indeed satisfies the predicate we are interested in in
the following lemma:

Lemma 3. In the above partitioning, Prsrcs(k) holds in all rounds r.

Proof. Fix any set S of size k + 1. We show that for S and some pr, Prsrc(pr, S) holds. Note
that because there are k partitions, at least two distinct processes q, q′ ∈ S must be from the
same partition.
If q, q′ ∈ Di, 0 < i < k, then by the strong connectedness of Di, (q → q′) ∈ Gr and therefore
Prsrc(q, S) holds.
If, on the other hand, q, q′ ∈ D, by the weak connectedness of D and because D = 2, we
have that (q → q′) ∈ Gr ∨ (q′ → q) ∈ Gr holds, which implies that Prsrc(q, S) ∨ Prsrc(q′, S)
holds.

We can now finish the proof by showing that this partitioning satisfies the conditions of the
BRS-Theorem.
(A) R(D) is nonempty:

Note that we have defined Gr such that, for all rounds r, it holds that there are no mes-
sages sent to a process of D by a process of some Di, 0 < i < k. By Lemma 3, these
communication graphs correspond to an admissible execution. Therefore, by the assumed
correctness of A, the nodes in D must eventually decide without receiving any messages
from any process not in D.

42

(B) R(D) 4D R(D,D):
Note that in addition to the facts mentioned in (A), our communication graphs ensure that
there is no communication between any two partitions Di and Dj , 0 < i 6= j < k.
Pick any run ρ ∈ R(D). Create a new run ρ′, which is the same as ρ except that the nodes
in Di, 0 < i < k, start with unique initial values in ρ′. Because there are no messages
exchanged between any two partitions, by the assumed correctness of A, the processes of
Di must eventually decide on a proposal value from Di, hence establishing ρ′ ∈ R(D,D).
Also the nodes of D in ρ′ make exactly the same state transitions as in ρ, because the
initial state of the nodes in D as well as the sequence of communication graphs is the

same in both runs, establishing ρ D∼ ρ′.
(C) Consensus is impossible inM′ =

〈
D
〉
:

Because |D| = 2 and D is weakly connected, we may construct a communication graph
for each round in such a way that the two processes q, q′ of D are either connected by a
link (p → q) or by a link (q → p) or by a link (p ↔ q). By Theorem 3, consensus is
impossible in such a setting.

(D) M′A|D|
4DMA:

Fix any run ρ′ ∈ M′A|D|
and consider the run ρ ∈ MA where every process in D has the

same initial state and the same sequence of communication graphs in ρ as in ρ′. Since in
our sequence of communication graphs messages are never sent between any two parti-

tions anyway, we immediately have ρ D∼ ρ′.

Note how the key argument in this proof was again the partitionability of the system, as
per our round-by-round communication graph model, and the impossibility of consensus in one
partition D. The construction we used to make consensus impossible in D was that there is a
moving two-source in D, i.e. a two-source which may move in every round.

43

CHAPTER 6
General Omission Failures

In the DDN model of Chapters 4 and 5, there is no notion of a faulty process. Rather, following
the view introduced in [43], every process may suffer from communication failures on its incom-
ing and/or outgoing links. In this chapter, we will take the more classic view, which attributes
communication failures to the sending or receiving process.

6.1 Omission Failures

We already introduced crash failures, where processes may stop operating at any point, in Sec-
tion 2.3. Omission failures [39, 41] are a more general failure model that include crash failures
as a special case. We consider only synchronous systems here and define three types of omission
failures:

1. A send omission failure is said to occur at a process, if it sends messages only to a subset
of processes, in some round. Note that this also covers crash failures.

2. Similarly, a process commits a receive omission failure, if it receives only a subset of the
messages that were sent to it or crashes.

3. A general omission failure is said to occur when a process may commit send omissions as
well as receive omissions.

When modeling the sending of messages at a process as putting the messages into a remote
buffer, respectively the receiving of messages as reading the messages from a local buffer, an
omission failure corresponds to a faulty buffer. For example, a local buffer overflow at some
process could be modeled as a receive omission failure of this process.

By their definition, omission failures include crash failures as special cases. This is justified
by the fact that a crashed process behaves the same with respect to the sending and receiving of
messages as a process that omits all processes from some round on. We can therefore conclude
that an algorithm that is resilient to t omission failures is also resilient to t crash failures [41].

45

Analogously, when we have an impossibility result for crash failures, this impossibility holds
also for omission failures. However, note carefully that omission failures are a more severe
failure mode than crash failures, as e.g. a process that did not send to some other process in a
round may do so in a later round. This means that problems that are solvable in the crash failure
model are not necessarily solvable in the general omission failure model.

6.2 Round Complexity

One way of evaluating the performance of a synchronous algorithm is to determine its round
complexity, i.e., the time it takes the algorithm to reach a terminal configuration. When de-
veloping algorithms one ideally looks for optimal round complexity, that is, algorithms with a
worst-case round complexity just above the lower bound round complexity for which there ex-
ists an impossibility proof. If no such optimal algorithm can be found, this may be an indication
that the lower bound is not tight [26].

A classic round complexity result is that t rounds are insufficient to solve consensus in the
presence of t crash failures [24]. This can be established by a bivalency proof [2], where it is
shown that every consensus algorithm has a run where it stays bivalent for t − 1 rounds and
undecided for one additional round. Informally, this proof inductively shows that in every round
≤ t − 1 we can find a single crucial process p that determines the valency of the configuration
in some failure-sparse execution, i.e. an execution where there is a single crash failure in every
round. The proof is then concluded by extending the execution for one additional round and
showing that not all processes can have decided at the configuration reached.

As the worst-case round complexity often occurs only in a few “exotic” executions, it is
advantageous to develop so-called early stopping algorithms that can terminate before the worst-
case round complexity in favorable executions [38]. In case of early stopping consensus [23],
for example, every deterministic algorithm needs at least min(t+ 1, f + 2) rounds in executions
where f ≤ t processes crash.

By the arguments provided in the previous section, we can conclude that the round complex-
ity result for consensus with t crash failures holds also for omission failures:

Theorem 9. There is no algorithm that solves consensus in the presence of t general omission
failures in ≤ t rounds.

6.3 k-Set Agreement with Omission Failures

A tight bound for the solvability of k-set agreement in synchronous systems with omission
failures is provided in [41, Theorem 2] as:

t <
k

k + 1
n (6.1)

The tightness of this bound means that k-set agreement is solvable if and only if less than
k
k+1n send omission failures occur in a run: there is an impossibility proof, based on a classic

46

partitioning argument, for t ≥ k
k+1n, and an algorithm for t < k

k+1n, as presented in [41, Figure
5].

The algorithm from [41, Figure 5] works as follows: Every process p sends its proposal
values to all other processes in every round. In addition, p stores locally a list of trusted processes
that corresponds to those processes that p received a message from. If p does not receive a
message from another process q in some round, p removes q from its list. Only if p has at least
n − t processes in its list after t − k + 2 rounds, will it decide on the minimum of all received
proposal values.

Using a complex correctness proof, it is shown that this algorithm solves k-set agreement
with t < k

k+1n general omission failures in t− k+ 2 rounds. It is an open question whether this
round complexity is optimal (cf. [41, Section 6.3]).

In an attempt to possibly answer this question, we will apply the BRS-Theorem (Theorem 1)
in this setting. Note that general omission failures essentially empower the adversary to let faulty
processes receive only a subset of the transmitted messages. The adversary can hence simply
let the processes of a single partition Di send only messages to and receive only messages
from processes within the very same partition, thereby immediately establishing property (D)
of the BRS-Theorem. Moreover it tells us that properties (A) and (B) of the BRS-Theorem can
be easily established if isolated decisions within the partitions can be enforced, as discussed
subsequently.

First, let us consider |Di|, the size of the partitions Di for 0 < i < k. In order to enforce a
decision within a partition Di, the processes in that partition must not be able to determine that
they are faulty. If they could reliably diagnose their own fault, an algorithm could simply not
let them decide since the termination condition states that only correct processes must decide.
This leads to the conclusion that we need as many faulty processes in a partition as there are
correct processes in the system, i.e. n− t. Then, each processes in Di receives the same number
of messages it would if it were correct and therefore has no way of determining that it is in fact
faulty.

Second, let us look at |D|, the size of the partition D. Since D is the last remaining partition
and the previously discussed partitions contained only faulty processed, D contains at least all
correct processes, thereby easily establishing property (A) of the BRS-theorem. Furthermore,
recall that, for the BRS-Theorem to establish an impossibility for k-set agreement, we need
a corresponding impossibility for consensus in D, which corresponds to property (C) of the
theorem. Therefore, for an impossibility of k-set agreement in x rounds, we would need x
general omission failures in D. Looking at the failure bound from Eq. (6.1), we could take an
“educated guess” at the number of failures remaining in D and conjecture that they are in the
order of t

k . This can be justified formally by applying the BRS-Theorem to the general omission
failure model.

Theorem 10. There exists no k-set agreement algorithm that terminates before t
k rounds in the

general omission failure setting.

Proof. For the purpose of deriving a contradiction, assume that some algorithm A solves k-set
agreement in the given model in at most x ≤ t

n rounds. We show that this implies the existence
of a partitioning such that the conditions of Theorem 1 are satisfied.

47

For Di we use partitions of size n − t. We define them employing the syntax from [8,
Theorem 2]: Let ` = n− t; for 1 ≤ i < k, define Di =

{
p(i−1)`+1, . . . , pi`

}
such that |Di| = `,

and let D =
⋃

1≤i≤k−1Di. From Eq. (6.1), we obtain t
k <

n
k+1 and n − t > n

(
1− k

k+1

)
=

n
k+1 , which yields

n− t > t/k. (6.2)

For x, the number of remaining faulty processes in D, we obtain

x = t− (n− t)(k − 1) < t

(
1− k − 1

k

)
=
t

k
(6.3)

which implies the admissibility of the runs in our partitioning where |D|+ t
k−1 (resp. |D|+b tkc)

processes are omission faulty, in the case of t
k ∈ N (resp. t

k /∈ N).
We conclude the proof by showing that this partitioning satisfies conditions (A)-(D) of The-

orem 1.
(A) R(D) is nonempty:

Consider the runs where the processes of D omit sending messages to any process of
D. Since our partitioning allows |D| general omission faults, these runs are admissible.
Moreover, as the n − t correct processes of D send their messages to every other correct
process ofD, becauseA solves k-set agreement with the given failure bound, these correct
processes eventually decide. This establishesR(D) 6= ∅.

(B) R(D) 4D R(D,D):
Consider the set of runs H where processes of Di start with input value xi = i, 1 ≤ i ≤
k − 1. Moreover, for 1 ≤ i ≤ k − 1, let the processes of Di omit sending and receiving
messages to, resp. from, any process of Π \ Di. Again, since our partitioning allows
|D| general omission faults, H 6= ∅. Also, since processes of Di receive messages from
n − t other processes (of Di), they will eventually decide on xi because A solves k-set
agreement with the given failure bound.
Pick any ρ′ fromR(D). Note that the processes ofD receive no messages until they decide
in both R(D) and H and the proposal values of the processes of D are not restricted in

H. Thus, we can find a ρ in H with ρ D∼ ρ′. Since H ⊆ R(D,D) we have established
R(D) 4D R(D,D).

(C) Consensus is impossible inM′ =
〈
D
〉
:

Consider a system M′ =
〈
D
〉

that has the same system assumptions as M with the
restriction that x < t

k processes may be omission faulty inM′. This may occur in every
run of A, since our partitioning in combination with the failure bound allows up to x
omission faults. By Theorem 9, consensus is impossible inM′ in x rounds.

(D) M′A|D
4DMA:

Fix a run ρ′ ∈ M′A|D
. Take a run ρ fromMA, where the processes of D never send any

message to a process of D and the processes of D in A make the same state transitions as
in ρ′. ρ exists because our partitioning allows |D| omission faults and A|D is a restriction
of A according to Definition 1.

48

Interestingly, there exists a k-set agreement algorithm that terminates in b tkc + 1 rounds
and tolerates up to t crash failures and a corresponding impossibility for b tkc rounds, based on
topological arguments [18]. For t

k /∈ N, we have b tkc <
t
k and hence, for these values, our bound

for omission failures matches exactly this bound for crash failures. Thus, we have to conclude
that, unfortunately, the BRS-Theorem does not allow us to determine whether general omission
failures increase the round complexity when compared to crash failures: The lower bound proof
from [18] shows that this bound holds even for the less severe crash failures (albeit its proof
requires topological arguments). Note carefully that for models such as the crash failure model,
where a complete partitioning of the processes cannot be established, the BRS-Theorem is not
directly applicable. Very different arguments equivalent to the ones that can be found in the
according topological proofs are required here, which are rooted in a very different source of
impossibilities than partitioning, namely, some generalized “symmetry breaking” impossibility.
We will make a very similar observation regarding the shared memory model in Chapter 7,
where we will discuss this issue in more detail.

From the previous explanations, we can also conclude that for algorithms with strong termi-
nation (also called uniform algorithms [17]), where all non-crashed faulty processes must also
decide (in particular, omission faulty processes that continue to make steps), the BRS-Theorem
immediately provides us with the lower bound of t − k + 3 rounds: We choose for Di with
0 < i < k single-process partitions of omission faulty processes that neither send nor receive
any messages but never cease to make steps. Because of strong termination, there are executions
where these processes decide on k − 1 distinct values. This leaves t − (k − 1) = t − k + 1
faulty processes for D, which corresponds to the impossibility of consensus in D in t− k+ 2 or
fewer rounds, as the round complexity lower bound for uniform consensus with f crash failures
is f + 2 rounds [17].

49

CHAPTER 7
Shared Memory

In this final chapter, we attempt to adapt the BRS-Theorem from Chapter 3 to the shared memory
model of computation from Section 2.2. We show that certain parts of the theorem can be carried
over literally to this fundamentally different model, and elaborate on the only part in for which
we could not yet find a suitable counterpart. We conclude the chapter with a detailed discussion
of the non-topological impossibility result for k-set agreement in shared memory by Attiya and
Castañeda [4, 5] and compare the approaches taken therein to the BRS-theorem.

7.1 Immediate Snapshot Executions

We already briefly introduced immediate snapshot (IS) executions in Section 2.2. Subsequently
we will see that they provide a very useful abstraction in the sense that they greatly reduce the
complexity of analyzing all the different interleaving access schemes to the shared memory.
Because we will require more detailed insights about IS-executions in this chapter, we will now
proceed to examine them in more detail. For simplicity, we will assume that the considered IS
executions are minimal final, i.e. processes don’t take any steps after terminating.

Consider the exemplary IS execution ε = {p1, p2} {p3}, where p1 and p2 concurrently write
to the shared memory (and subsequently both read from it), followed by p3 writing to (and
reading from) the shared memory. Observe that in systems where shared memory is the only
means of exchanging information between processes, ε prohibits p1 and p2 from “seeing”, i.e.
learning anything about, p3. In general, in executions of the form ε {pi}r with r ≥ 1, ε 6= ∅ and
pi /∈ ε, we thus say that that pi is unseen in the execution. Accordingly, we say a process is seen
in an execution when it is not unseen in the execution.

Even though they are a significant restriction on the possible access schemes of the shared
memory, immediate snapshot executions still contain uncertainty. We will summarize here
briefly two main statements about this uncertainty. A comprehensive study of IS executions,
which includes detailed proofs of the two statements presented here as well as an elaboration
on topological aspects of IS executions, can be found in [6]. We will make use of their notation
ε
¬p∼ ε′ to express that ε and ε′ are indistinguishable for all processes of Π \ {p}.

51

In order to gain some insight into the uncertainty of IS executions, let us investigate the
following issue: Considering the above example execution ε = {p1, p2} {p3}, can we find an
execution ε′ 6= ε that is indistinguishable from ε to p2 and p3 but not to p1, i.e. find ε′ s.t.
ε
¬p1∼ ε′ holds?

To answer this question, we could first look closely at what p3 observes in ε. Obviously,
p3 sees what p1 and p2 wrote to their respective single-writer registers. But can p3 deduce in
which order p1 and p2 wrote to the shared memory? This answer can be reduced to determining
whether p1 or p2 can observe in which order they make their step and whether they can tell
anybody about it. The crucial thing to note here is that while p1 and p2 both see the other, they
do so only after writing to the shared memory since they take their snapshot of the memory after
they wrote to it (and thereby render themselves visible). Thus, although once p3 takes its step,
it could deduce the ordering of the steps taken by p1 and p2 from their combined local views,
since those views have been obtained only after p1 and p2 wrote to the shared memory, p3 has
no way to learn them.

This means that p3 cannot distinguish between ε = {p1, p2} {p3}, ε1 = {p1} {p2} {p3}, and
ε2 = {p2} {p1} {p3}. Since we were interested in some ε′ that is distinguishable from ε only
for p1, we can choose ε1 as the desired ε′: Because p2 cannot determine locally whether p1 read
from the shared memory just before p2 wrote to it or concurrently with p2, we have ε

¬p1∼ ε1.
Regarding ε2, note carefully that ε

¬p2∼ ε2 holds.
It is intuitively clear that we could not have chosen any other distinct ε′, even in the more

general case of an execution that contains many more steps and is of the type
α = s1 . . . sl {p1, p2} {p3} sl′ . . . sl′′ {p1}t where t ≥ 0 and the step of p1 after sl is its last
observable step (formally ∀m ∈ [l′, l′′] : p1 /∈ sm):
Here, for α′ = s1 . . . sl {p1} {p2} {p3} sl′ . . . sl′′ {p1}t

′
with some unique t′ ≥ 0 that is chosen

so that p1 terminates in α′, we have that α′ uniquely satisfies α
¬p1∼ α′; if putting p1 even further

into the prefix of α resulted in a different execution, then some process other than p1 would
notice that and distinguish between the executions. Moreover, if we modified the view of p1 in
α in any step but its last observable step, p1 could make this different view known to the other
processes (at latest) in its last observable step.

Accordingly, if we are given ε′ as above and want to find ε 6= ε′ s.t. ε
¬p1∼ ε′, it is clear that

there is only one possible choice for ε (of course this is also true for α′ and α).
Finally, let us investigate what would happen if we wanted to find an execution ε′′ that is

distinct from ε but ε
¬p3∼ ε′′ holds. Obviously, it is not really possible to find such an ε′′, because

as soon as we move {p3} to a different location in ε some process will “see” p3 and the execution
will no longer be indistinguishable for this process. Additionally, as we restricted ourselves to
minimal final executions, appending {p3}t for some t > 0 to ε does not constitute an admissible
execution. The reason for this is that p3 is unseen in ε. Generally speaking, when we have an
execution of the form α = s1 . . . sl {p}t with t > 0 and ∀m ∈ [1, l] : p /∈ sm, for the same
reasons as above, it is clear that no execution α′′ can exist for which α

¬p∼ α′′ holds.
In summary, we have the following two lemmas that tell us about the uncertainty of IS-

executions. They are in essence Lemma 3.3 and Lemma 3.4 from [6], resp. Lemma 1 and
Lemma 2 from [4], where formal and detailed proofs of their correctness can be found.

52

Lemma 4. If a process p is seen in an IS execution α, then there exists a unique IS execution
α′ 6= α such that α

¬p∼ α′ holds.

Lemma 5. If a process p is unseen in an IS execution α, then there is no IS execution α′ 6= α
s.t. α

¬p∼ α′ holds.

7.2 Applying the BRS-Theorem to Shared Memory

We will now proceed by explaining how properties (A), (C) and (D) of the BRS-Theorem (The-
orem 1) can readily be applied to the shared memory model and elaborate what the issues of
applying property (B) are.

Runs exist where the processes of D decide before hearing from D, i.e.,
(A)R(D) 6= ∅

While Theorem 1 states that R(D) describes the runs where the processes in D decide before
receiving a message from the processes in D, the purpose of this property is to ensure that no
process in D knows an initial value of any process in D. This is straightforward to establish in
shared memory with asynchronous processes if there may be |D| failures, i.e., depending on the
actual partitioning, the failure bound f must at least be greater or equal to k − 1 (as each of the
k − 1 partitions Di must at least contain one process): Consider for instance a run ρ where the
processes in D crash before making a step. Obviously, the remaining processes in ρ, namely the
processes in D will eventually decide without ever learning a proposal value of any process in
D, establishingR(D) 6= ∅.

An alternative to initially dead processes inD would be to consider runs where the processes
in D decide before a process in D makes a step. Again, such runs are admissible if at least
f ≥ |D| may crash, as then the processes in D cannot distinguish whether the processes in D
are just scheduled late or have crashed.

In all runs it holds that (C) Consensus is impossible inM′ =
〈
D
〉

This may be even more straightforward to establish than the previous result, as it can be achieved
simply by allowing a single crash failure to occur inD, irrespectively of the failure pattern of the
run. We can accomplish this by setting the failure bound f > |D|, which means that the failure
bound must be set at least to f ≥ k. The impossibility of consensus inM′ can subsequently be
derived directly from the result of [7, Theorem 5.24]. Note that this result shows that if we want
to prove the impossibility of k-set agreement for f ≥ k, as it is established in the topological
proofs from [14, 19, 32], we had indeed to choose a partitioning where |D| ≤ k − 1. Since we
need k − 1 decisions in D, in order to apply the BRS-Theorem, this implies that for this tight
impossibility bound we need |D| = k − 1, i.e. D consists of k − 1 single-process partitions.

53

The runs ofM′
AD

can be observed inM, i.e. (D)M′
A|D
4DMA

Recall that the restriction of an algorithm A|D is defined with respect to sending messages (cf.
Definition 1). Since we only consider single-writer, multi-reader registers for shared memory
here, when we want to run A on the restricted systemM′ =

〈
D
〉
, we don’t need to make any

additional modifications to A. That is, for our purposes in this chapter, AD = A.
In order to establish the compatibility itself, we simply have to consider those runs E ⊆MA

where the processes not in D are initially dead. To ensure E 6= ∅, i.e., guarantee that the runs
just described are admissible, we again need the failure bound f ≥ |D|, resp. f ≥ k − 1. For
an arbitrary run ρ ofM′AD

it is then easy to find a run ρ′ in E where the processes of D make

the same state transitions in ρ and ρ′. This establishes ρ D∼ ρ′ and thereby shows the desired
compatibility.

The remaining problem – establishing (B)R(D) 4D R(D,D)

Undoubtedly the hardest question when we try to apply the BRS-Theorem to shared memory
is how to establish the compatibility between the runs where the processes of D decide before
reading the contents of the single writer registers of D with the runs where the processes of D
behave in the same way but, additionally, the processes of D decide on k− 1 distinct values that
were initial values of processes in D.

The central task is finding out the precise nature of the runs R(D,D). At first, it might seem
that we could avoid this by glossing over the details of R(D,D), since it is not directly required
to describe them but merely to prove that they are compatible, wrt. D, to R(D). However, in
order to do so, we need to show that the properties of some ρ′ ∈ R(D) do not impair the ability

to form a run ρ ∈ R(D,D) with ρ D∼ ρ′. To accomplish this, we most certainly need to have at
least some insight into the inner workings ofR(D,D).

One idea would be to employ our knowledge about IS executions, previously introduced in
this chapter. They indeed give us a hint about a direct impossibility of k-set agreement: Suppose
a very simplistic algorithm uses some very straightforward basis like the largest known value
to determine whether a value is “better” suited as a decision than another one. In the wait-
free setting, i.e., with up to f = n − 1 failures, the run where every pi starts with input value
xi = i and only a single process takes steps until it decides is admissible. There, obviously, the
execution {p1}z1 {p2}z2 . . . {pn}zn , where zi corresponds to the number of steps it takes pi to
decide at the respective position in the execution1, will lead to n decision values. However this
result is only of very limited immediate use, as it severely restricts the class of algorithms that
we may consider – besides that it is not at all clear whether something like a “better” decision
value exists in general.

A major complication apparently comes from the fact that as a process p of D takes a step,
the processes of D are seen by p and p can most likely deduce their decision. Another idea
would hence be to restrict the meaning of communicating information from p to q to decision

1Note that the existence of zi is guaranteed by the assumed wait-freedom: A process p can never wait for a
process q 6= p to take a step as q might have crashed.

54

values: Even though q may observe the state of p via the shared memory, this does not mean
that it can (always) infer p’s decision value before p decides. We could thus try and exploit the
impossibility of consensus with a single crash failure [34, Section 12].

More specifically, we know that if we allow a process failure in D1 ∪D2, then consensus is
impossible in D1 ∪D2. Therefore, if we let the processes of Di start with initial value xi = i,
and, for 1 ≤ i < k, we let a single process fail in every set Di ∪ Di+1, then these sets could
not solve consensus pairwise among themselves. While this may sound promising at first sight,
there is an immediate problem with this approach:
The impossibility of consensus only means that there exists (possibly only) one execution where
consensus fails in Di ∪ Di+1. This means that when we investigate R(D) for k ≤ 3, a run
where consensus is impossible among D is guaranteed to exist. For k > 3 things become more
complex: Here, we actually would need to show for all2 i with 1 ≤ i ≤ k−1

4 that one of the exe-
cutions εi,i+1 where consensus fails inMi,i+1 = 〈Di ∪Di+1〉 is indistinguishable for the pro-
cesses of D from the execution εi+2,i+3 where consensus fails inMi+2,i+3 = 〈Di+2 ∪Di+3〉.
Unfortunately we could not find an immediate argument for why it should be possible to es-
tablish this indistinguishability. In fact, given that such an argument very much resembles the
higher-order indistinguishability of configurations used in topological proofs [14, 19, 32], this is
not surprising.

Finally, an alternative way to overcome this problem could be to generalize bivalence to
k-valence and to try to show that starting from a k + 1-valent initial configuration, we can find
for every k + 1-valent configuration, a k + 1-valent successor configuration. This would need
an invariant such as in every k + 1-valent configuration, there exists a process p s.t. when p
takes a step, the valency of the configuration is not reduced. In a way, such a process p would
correspond to a non-critical process from [7, Lemma 5.17]. Actually, approaches such as this
one have been tried in the past and lead to the topological impossibility proofs of k-set agreement
from [14, 19, 32].

The problems that arise when adopting the BRS-Theorem to shared memory systems could
hence be summarized as the following fundamental conflict: The key arguments of the BRS-
Theorem require us to make a complete partitioning with respect to messages sent and received.
In the shared memory model, this would correspond to a partitioning with respect to sharing
some certain knowledge. Actually, we already faced a similar problem in the previous chapter
when considering crash failures and general omission failures: Only the latter allowed us to
establish a completely partitioned system without the processes reliably diagnosing (own) faults.
Interestingly, the impossibility of achieving certain knowledge is fundamentally different from
the impossibility of conveying information as used in the partitioning argument in the BRS-
Theorem. As exploited in the topological proofs [14, 19, 32], the former is the perpetuated
discrepancy in the view of all the processes, as delivered, e.g., by the application of Sperner’s
Lemma, that does not allow any pair processes in the system to ever share certain knowledge.

2For ease of notation during this simple illustration let us assume k ≡ 1 mod 4.

55

7.3 A Non-topological Impossibility Using a Graph of Executions

The impossibility result from [4] concerns IS-executions of a k-set agreement algorithm in wait-
free shared memory with k < n and xi = i initially.

The the proof consists of an induction on the correct processes, denoted the participating set
of processes. The induction starts from participating set p1 and involves the induction step from
participating set {p1, . . . , p`} to {p1, . . . , p`, p`+1}. The maximal participating set is obviously
{p1, . . . , pn} = Π. It is shown that there is an odd number (greater than or equal to 1) of
executions where there are ` distinct decision values, with participating set {p1, . . . , p`}, for all
values of `. Because we may set ` = n and n > k, this yields the existence of an execution
where more than k values are decided upon.

While the base case of the induction is rather obvious – a single process will decide on a sin-
gle value in the wait-free setting – the induction step contributes the bulk of the proof. In short,
for the induction step from ` to ` + 1, a graph is constructed, where each vertex corresponds to
an execution of the set S`+1, i.e. those executions with participating set {p1, . . . , p`+1}. Addi-
tionally, there is one so-called imaginary vertex v∗ in the graph that does not correspond to an
execution. The presence of an edge between two vertices (that both represent an execution from
the set S`+1) is determined by the relation in which the two respective executions stand3:

• An edge is present between two executions, if and only if exactly one process p observes
a difference between the two and in both executions ` distinct decisions from the set
{1, . . . , `} are made by those processes for which the executions are indistinguishable.
The edge is said to be with respect to p.

• An edge is present between an execution and v∗, if and only if p`+1 is unseen in the
execution and ` distinct decisions from the set {1, . . . , `} are made by the processes of
{p1, . . . , p`} in the execution. The edge is said to be with respect to p`+1.

Using the induction hypothesis, it is shown that the imaginary vertex has odd degree: Recall that
the induction hypothesis states that there is an odd number of executions in S`, where ` distinct
decisions are made. Picking any one of them, it is clear that we can simply append the suffix
{p`+1}r where only p`+1 takes steps until p`+1 decides in order to create an execution adjacent
to v∗. By the determinism of p`+1, r is unique and thus the number of executions adjacent to v∗

is odd as a result of this simple one-to-one and onto mapping.
The proof is concluded by showing that the executions of S`+1 where ` + 1 distinct values

are decided (i.e. values from {1, . . . , `+ 1}, as we had xi = i initially) have degree 1 while all
other executions have degree 0 or 2.

• The former can be intuitively understood as follows: Let q be the process that decides
` + 1. Because the participating set contains ` + 1 processes, each processes different
from q must decide on a distinct value from {1, . . . , `}. It follows that q is the only
process with respect to which there can be an edge.

3In the following presentation, we do not distinguish between executions and edges that represent these exe-
cutions, i.e., we say for example that an execution and an edge are incident when the graph contains an edge that
includes the vertex representing this execution.

56

If q is seen, by Lemma 4, there is precisely one execution indistinguishable for all pro-
cesses but q, thus ensuring that both executions are the only ones adjacent to each other in
the graph.

If q is unseen, then by Lemma 5 there is no execution indistinguishable for all processes
except q. Therefore, since the processes other than q decide 1, . . . , ` and xi = i initially,
by validity it must hold that q = p`+1. Hence, there is precisely one edge from this
execution, namely the one to v∗.

• The latter can be shown by first noting that executions where the the set of decision values
is different from {1, . . . `} cannot have an incident edge, since obviously no subset of the
processes of such executions decides all the values from {1, . . . , `}.

It remains to be shown what happens when the set of decisions in an execution is {1, . . . `}.
As the number of processes participating in this execution is ` + 1, two processes q1 and
q2 must decide on the same value u. Note that all processes different from q1, q2 decide
on a distinct decision value from {1, . . . , `} \ {u}. Just as before, it follows immediately
that q1, q2 are the only processes with respect to which there can be an edge. Again, just
as before, we identify two distinct cases:

If q1 and q2 are seen, then by Lemma 4 there is precisely one edge with respect to q1 and
one edge with respect to q2 and no other edges from this execution.

Note that two unseen processes constitute a contradiction. Thus, the remaining case is
that either q1 or q2, say q2 is unseen. In this scenario, by Lemma 4, there is precisely one
execution indistinguishable for all process but q1 and thus there is an edge with respect to
q1 to this execution.
Moreover, as q2 is unseen and each of the ` processes other than q2 decides on a distinct
value from {1, . . . , `}, because we had xi = i, it follows from validity that q2 = p`+1.
Because of this and because of Lemma 5, there is a single edge with respect to q2 to v∗.
Together with the single edge with respect to q1 we have that the current execution has
degree two.

Since, by the handshake lemma, any graph has an even number of vertexes with odd degree
and v∗ has odd degree and additionally the only other vertexes with odd degree are the ones
where `+ 1 values are decided, there must exist an odd number, greater than or equal to one, of
executions with `+ 1 decisions.

7.4 Comparing the BRS-Theorem and Counting Arguments

Let us now compare the proof of the impossibility of wait-free k-set agreement from [4], as
sketched in the previous section, and a similar non-topological proof for (n − 1)-set Agree-
ment from [5] with the BRS-Theorem. What is immediately apparent is that the BRS-Theorem,
while highly generic, requires for one of its core arguments that the distributed system can be
partitioned in such a way that there exist processes that have no knowledge about some other
processes and vice-versa. It is this partitioning that provides us with the fact that these processes

57

from a different partition cannot decide on the same value in runs where the initial values of the
partitions form disjoint sets. This, in conjunction with a clever application of the impossibility
of consensus in a restricted system, is the crux of the BRS-Theorem. As we have seen through-
out this thesis, this argument can be applied in a great variety of scenarios. Nevertheless, we
have not yet found a way to use the same argument in the shared memory model, as elaborated
previously in this chapter.

The counting-based impossibility proofs are in a way a non-topological version of the orig-
inal topological impossibility proofs of k-set agreement from [14, 19, 32]: they show elegantly
how to express the application of Sperner’s Lemma, which is the topological theorem to which
the original topological impossibility results all share a connection, using purely combinatoric
arguments [3]. To the best of our knowledge, however, as of the writing of this thesis, there are
no counting-based proofs that show the tight failure bound for the impossibility of k-set agree-
ment, i.e., the k-resilient impossibility with up to k failures. Instead, they require the much more
restrictive assumption of wait-freedom, i.e., they show the impossibility of (n − 1)-resilient k-
set agreement. Wait-freedom, however, in turn easily allows an arbitrary partitioning to occur,
which is again in the realm of the BRS-Theorem (Theorem 1). We hence conjecture that these
are indeed (at least) two different and independent sources of impossibility for general k-set
agreement (1 < k < n), namely, partitioning (covered by the BRS-Theorem) and higher-order
“symmetry breaking” (covered by the topological proofs).

Finally, we would like to note that as far as we know, it is not yet known whether the parti-
tioning (hence the BRS-Theorem) has a topological counterpart, like the counting-based proofs
presented here obviously have. Finding such a topological analogy for the BRS-Theorem could
indeed establish a relation to the counting-based approaches that is not yet apparent.

58

CHAPTER 8
Summary and Outlook

In this thesis, we investigated and extended the range of applications of the recently published
BRS-Theorem (Theorem 1). The BRS-Theorem combines classic partitioning arguments with
the impossibility of consensus, using a rigorous framework of systems and their subsystems,
restrictions of algorithms and compatibility of runs.

In several chapters, we have applied the BRS-Theorem to a wide variety of different system
models:

1. We used it to derive new non-topological impossibilities for k-set agreement in syn-
chronous dynamic message-passing networks, where we showed that root components
must be stable for sufficiently long, and that even an eventual stability of all root compo-
nents may still lead to a safety violation. In [45], this impossibility has been employed to
develop assumptions and an algorithm that allows to solve k-set agreement in this setting.

2. We investigated a more fundamental description of synchronous dynamic networks, namely
networks where some low-level graph predicate Psrcs holds. We introduced a rigorous
proof based on the BRS-Theorem in conjunction with existing results on consensus with
lossy links, and showed that the slightly weaker predicatePrsrcs makes solving k-set agree-
ment impossible.

3. We proceeded to message-passing systems prone to general omission failures, a failure
model that includes crash failures as a special case, but is in general more severe. We
employed the BRS-Theorem and some well-known consensus impossibility results to give
a (non-topological) lower bound that matches the lower bound for crash failures.

4. We elaborated on the challenges of adopting the BRS-Theorem to the more powerful
shared memory model of computation, where topological proofs are usually used for prov-
ing k-set impossibilities. We observed a fundamental problem related to the fact that the
partitioning required for applying the BRS-Theorem cannot usually occur there. We hence
conjecture that there are actually two different sources of k-set impossibilities.

59

We hope to find answers to the following still open questions in future research:

• Can we use the BRS-Theorem in the search for the weakest failure detector for k-set
agreement in message passing systems?

We have seen how the BRS-Theorem can be employed to show that the failure detector
(Σk,Ωk) is too weak to solve k-set agreement in message passing systems. On the other
hand, the slightly stronger failure detector (Σk, Xk) is sufficient, but unfortunately too
strong. This implicates that the weakest failure detector is somewhere between (Σk,Ωk)
and (Σk, Xk). As we were able to show the insufficiency of (Σk,Ωk) using the BRS-
Theorem, analyzing the detailed reasons for it to apply, might be the key that yields the
necessary property to be added to (Σk,Ωk) to make it the weakest failure detector for
k-set agreement in message passing systems.

• What is the weakest assumption that makes k-set agreement possible in the DDN model
when eventual stability is the only assumption (apart from assumptions that exclude trivial
impossibilities)?

We developed a sufficient and very weak assumption and an according algorithm, which
are, at the time of writing, under review for publication. Yet, it remains open whether the
impossibility from Theorem 7 can be strengthened to precisely match this assumption or
whether this assumption can be weakened any further.

• What is the weakest predicate that enables k-set agreement in the DDN model?

We saw that Psrcs(k) is sufficient, yet were not able to show that it is the weakest predi-
cate that provides solvability. Rather, it seems that the implications of Psrcs(k) are rela-
tively strong, which suggests that a weaker predicate exists. On the other hand, Prsrcs(k),
which is only slightly weaker than Psrcs(k), was shown to be insufficient for making k-set
agreement solvable. This indicates that there might exist a third predicate, stronger than
Prsrcs(k) but weaker than Psrcs(k), that precisely captures the solvability boundary.

• Is t − k + 2 a tight lower bound for the round complexity of k-set agreement algorithms
in systems with t general omission failures?

We have shown how an application of the BRS-Theorem leads to the impossibility of k-set
agreement with t omission failures in less than t

k rounds. Moreover, we mentioned that
for uniform algorithms, the BRS-Theorem supplies us with the impossibility in t− k + 2
rounds. However, the issue whether t− k + 1 rounds constitute an impossibility even for
non-uniform algorithms, requires further investigation.

• Is there a topological counterpart of the BRS-Theorem?

We have seen that the BRS-Theorem is not able to provide impossibilities in systems
where no suitable partitioning can be established. One approach to circumvent this short-
coming would be to find a transformation of the BRS-Theorem to a topological counter-
part and analyze on a topological level what is needed to establish said impossibilities.
This might lead to a widely applicable and novel argument for the impossibility of k-set
agreement in general.

60

Bibliography

[1] Marcos K. Aguilera. Stumbling over Consensus Research: Misunderstandings and Issues.
In Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors, Replication,
volume 5959 of Lecture Notes in Computer Science, pages 59–72. Springer Berlin Heidel-
berg, 2010.

[2] Marcos K. Aguilera and Sam Toueg. A simple bivalency proof that -resilient consensus
requires rounds. Information Processing Letters, 71(3-4):155–158, August 1999.

[3] Hagit Attiya. A Direct Lower Bound for k-Set Consensus. In PODC, 1998.

[4] Hagit Attiya and Armando Castañeda. A non-topological proof for the impossibility of
k-set agreement. Theoretical Computer Science, September 2012.

[5] Hagit Attiya and Ami Paz. Counting-Based Impossibility Proofs for Renaming and Set
Agreement. In Marcos K. Aguilera, editor, Distributed Computing, volume 7611 of Lecture
Notes in Computer Science, pages 356–370. Springer Berlin Heidelberg, 2012.

[6] Hagit Attiya and Sergio Rajsbaum. The Combinatorial Structure of Wait-Free Solvable
Tasks. SIAM Journal on Computing, 31(4):1286–1313, January 2002.

[7] Hagit Attiya and Jennifer Welch. Distributed Computing (Second Edition) Fundamentals,
Simulations and Advanced Topics. Wiley-Interscience, 2004.

[8] Martin Biely, Peter Robinson, and Ulrich Schmid. Easy Impossibility Proofs for k-Set
Agreement in Message Passing Systems. In Antonio Fernàndez Anta, Giuseppe Lipari,
and Matthieu Roy, editors, Principles of Distributed Systems, volume 7109 of Lecture
Notes in Computer Science, pages 299–312. Springer Berlin Heidelberg, 2011.

[9] Martin Biely, Peter Robinson, and Ulrich Schmid. Solving k-Set Agreement with Sta-
ble Skeleton Graphs. In Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pages 1488–1495. IEEE, May 2011.

[10] Martin Biely, Peter Robinson, and Ulrich Schmid. Agreement in Directed Dynamic Net-
works. arXiv:1204.0641, 7355:73–84, April 2012.

[11] Martin Biely, Peter Robinson, and Ulrich Schmid. Weak synchrony models and failure
detectors for message passing k-set agreement. IEEE Transactions on Parallel and Dis-
tributed Systems, 2013. (to appear).

61

[12] Martin Biely, Peter Robinson, Ulrich Schmid, and Kyrill Winkler. Easy Impossibility
Proofs for k-Set Agreement. (in preparation).

[13] François Bonnet and Michel Raynal. On the road to the weakest failure detector for k-set
agreement in message-passing systems. Theoretical Computer Science, 412(33):4273–
4284, July 2011.

[14] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient
asynchronous computations. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, STOC ’93, pages 91–100, New York, NY, USA, 1993. ACM.

[15] Tushar D. Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, July 1996.

[16] Tushar D. Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, March 1996.

[17] Bernadette Charron-Bost and André Schiper. Uniform consensus is harder than consensus.
Journal of Algorithms, 51(1):15–37, April 2004.

[18] S. Chaudhuri, M. Herlihy, Nancy A. Lynch, and Mark R. Tuttle. A tight lower bound for
k-set agreement. In Foundations of Computer Science, 1993. Proceedings., 34th Annual
Symposium on, pages 206–215. IEEE, November 1993.

[19] Soma Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation, 105(1):132–158, July 1993.

[20] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Tight failure detection
bounds on atomic object implementations. J. ACM, 57:22:1–22:32, May 2010.

[21] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamen-
tal problems in distributed computing. In Proceedings of the 23rd ACM Symposium on
Principles of Distributed Computing (PODC’04), pages 338–346. ACM Press, 2004.

[22] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed
for distributed consensus. J. ACM, 34(1):77–97, January 1987.

[23] Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping in Byzantine
agreement. Journal of the ACM, 37(4):720–741, October 1990.

[24] Danny Dolev and H. Raymond Strong. Authenticated Algorithms for Byzantine Agree-
ment. SIAM Journal on Computing, 12(4):656–666, November 1983.

[25] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, April 1988.

[26] Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed computing.
Distributed Computing, 16(2-3):121–163, September 2003.

62

[27] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[28] Carole D. Gallet, Hugues Fauconnier, and Rachid Guerraoui. Tight failure detection
bounds on atomic object implementations. J. ACM, 57(4), May 2010.

[29] Carole D. Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamen-
tal problems in distributed computing. In Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing, PODC ’04, pages 338–346, New York,
NY, USA, 2004. ACM.

[30] Jim N. Gray. Notes on data base operating systems. In R. Bayer, R. M. Graham, and
G. Seegmüller, editors, Operating Systems, volume 60 of Lecture Notes in Computer Sci-
ence, pages 393–481. Springer Berlin Heidelberg, 1978.

[31] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems. In
Sape Mullender, editor, Distributed Systems, chapter 5, pages 97–145. Addison-Wesley,
2nd edition, 1993.

[32] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient
tasks. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing,
STOC ’93, pages 111–120, New York, NY, USA, 1993. ACM.

[33] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[34] Nancy A. Lynch. Distributed algorithms. Morgan Kaufmann Publishers, 1996.

[35] Achour Mostefaoui, Sergio Rajsbaum, Michel Raynal, and Corentin Travers. On the com-
putability power and the robustness of set agreement-oriented failure detector classes. Dis-
tributed Computing, 21(3):201–222, September 2008.

[36] Achour Mostéfaoui, Michel Raynal, and Julien Stainer. Relations linking failure detectors
associated with k-set agreement in message-passing systems. In Xavier Défago, Franck
Petit, and Vincent Villain, editors, SSS, volume 6976 of Lecture Notes in Computer Science,
pages 341–355. Springer, 2011.

[37] Gil Neiger. Failure detectors and the wait-free hierarchy (extended abstract). In Proceed-
ings of the fourteenth annual ACM symposium on Principles of distributed computing,
PODC ’95, pages 100–109, New York, NY, USA, 1995. ACM.

[38] Philippe R. Parvédy and Michel Raynal. Optimal early stopping uniform consensus in
synchronous systems with process omission failures. In Proceedings of the sixteenth an-
nual ACM symposium on Parallelism in algorithms and architectures, SPAA ’04, pages
302–310, New York, NY, USA, 2004. ACM.

63

[39] Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of processor and
communication faults. Software Engineering, IEEE Transactions on, SE-12(3):477–482,
March 1986.

[40] Michel Raynal. Communication and agreement abstractions for fault-tolerant asyn-
chronous distributed systems. Morgan & Claypool Publishers, 2010.

[41] Michel Raynal and Corentin Travers. Synchronous Set Agreement: a Concise Guided Tour
(including a new algorithm and a list of open problems). In PRDC ’06. 12th Pacific Rim
International Symposium on Dependable Computing, pages 267–274. IEEE, December
2006.

[42] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: the topol-
ogy of public knowledge. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, STOC ’93, pages 101–110, New York, NY, USA, 1993. ACM.

[43] Nicola Santoro and Peter Widmayer. Time is not a healer. In Proc. 6th Annual Symposium
on Theor. Aspects of Computer Science (STACS’89), LNCS 349, pages 304–313, Pader-
born, Germany, February 1989. Springer-Verlag.

[44] Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility Results and Lower Bounds for
Consensus under Link Failures. SIAM Journal on Computing, 38(5):1912–1951, January
2009.

[45] Manfred Schwarz. k-Set Agreement in Graphs With Stable Root Components. Master’s
thesis, Technische Universität Wien, Karlsplatz 13, 1040 Wien, 2013.

[46] Manfred Schwarz, Kyrill Winkler, Martin Biely, Peter Robinson, and Ulrich Schmid. k-set
agreement under dynamic link failures. (submitted).

64

