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Abstract—Schmitt-Trigger circuits are the method of choice
for converting general signal shapes into clean, well-behaved
digital ones. In this context these circuits are often used for
metastability handling, as well. However, like any other positive
feedback circuit, a Schmitt-Trigger can become metastable itself.
Therefore, its own metastable behavior must be well understood;
in particular the conditions that may cause its metastability.

In this paper we will build on existing results from Marino to
show that (a) a monotonic input signal can cause late transitions
but never leads to a non-digital voltage at the Schmitt-Trigger
output, and (b) a non-monotonic input can pin the Schmitt-
Trigger output to a constant voltage at any desired (also non-
digital) level for an arbitrary duration. In fact, the output can
even be driven to any waveform within the dynamic limits of
the system. We will base our analysis on a mathematical model
of a Schmitt-Trigger’s dynamic behavior and perform SPICE
simulations to support our theory and confirm its validity for
modern CMOS implementations. Furthermore, we will discuss
several use cases of a Schmitt-Trigger in the light of our results.

I. INTRODUCTION

It is a fundamental task in digital computation to discrimi-
nate the analog voltage levels carried by the signal rails in the
physical implementation in two logical classes, namely those
representing a logic HI and those representing a LO. That
can normally be managed by the conventional input stages
of logic gates. However, when there is a need for handling
less “clean” signals with intermediate voltage levels, slow
transitions, or large noise, special provisions are required. This
may happen at interfaces or when external disturbances come
into play, or in case of metastability of an internal bistable
element which can also be caused by clean but badly timed
signals. The standard solution for this is the use of a Schmitt-
Trigger (S/T) circuit. Unlike a plain discriminator circuit that
uses just a single constant reference voltage VT for separating
into HI (above VT ) and LO (below VT ) digital values, the S/T
exhibits a hysteresis at its input by switching the reference
voltage between VH and VL (with VH > VL) in dependence
of its current output state, with VH being applied when the
output is LO and VL for a HI output1. This facilitates stability
against noisy input voltages in the proximity of the threshold
that typically cause the discriminator to oscillate.

This research was partially supported by the SIC project (grant
P26436-N30) of the Austrian Science Fund (FWF).

1For the conceptual part of our analysis we consider a non-inverting S/T,
while later, in context with the practical design we will study its inverting
version that is easier to implement.

Clearly, the original intention of the S/T, namely to dis-
criminate a continuous input voltage space into two sub-
spaces, does not imply a stateful behavior. However, the
hysteresis behavior desired for noise immunity does. This
caused some uncertainty about whether a S/T can become
metastable. Thanks to the results of researchers like Marino
[1] and Chaney [2] it is today clear that a S/T, like any other
circuit relying on positive feedback, cannot be protected from
metastability and will therefore exhibit irregular behavior for
some input voltage traces. Still S/Ts are sometimes proposed
for filtering metastable outputs of bistable elements [3], or
for uniquely classifying the logic level of a node that is
intentionally left floating for some time in order to leverage
the parasitic capacitance as a dynamic storage element [4], [5].
So one may ask whether such approaches can actually work.
In other cases (e.g. [6]), it is hoped that for input voltages with
restricted dynamics a S/T will never experience metastability.
Again something to check for in more detail.

In this paper we extend existing results – mainly those from
Marino [1] – to answer some of these questions that frequently
plague designers in practice. To this end we will, after giving a
background in Section II, characterize the metastable behavior
of the S/T in detail and compare it to that of a typical
bistable element (e.g. latch) in Section III. Since metastability
is usually a very rare phenomenon that eludes an experimental
evaluation, our aim is to give theoretically well founded
answers and particularly identify those conditions under which
metastability of the S/T can be ruled out for sure. Here we
will investigate different scenarios like monotonic and slowly
changing inputs. Next, in Section IV we will validate our
theoretical results by selected SPICE simulations. In Section V
we will investigate concrete use cases of a S/T in the light of
our findings. Finally, in Section VI we will conclude our paper.

II. BACKGROUND

A. Metastability

Metastability is the phenomenon when a bistable element
persists in an unstable equilibrium, the metastable state, for
a prolonged time. The existence of a metastable state is a
fundamental property of every bi- or multistable system –
between every two stable equilibria there necessarily is an
unstable equilibrium. The difference lies in the behavior when
the equilibrium state is slightly disturbed: The system would
return to a stable state, however, upon the slightest disturbance
from a metastable state, the latter is left in favor of either of
the stable states.



It is well understood [7] that every bistable element can
be brought to a metastable state in which it may rest for an
unbounded time. The manifestation of the metastable state can
be oscillation or “creeping” [8]. In the creeping case, which is
more relevant here, we know that the classical bistable storage
elements (latch, Muller C-element) drive their output at first to
a specific “metastable” voltage level Vmeta, where it stays for
an unbounded amount of time, before resolving to one of the
stable saturation states. Due to their function Vmeta must be in
between their regular HI and LO states, and, due to symmetry
in the design, it is typically an intermediate voltage level
in the undefined range Vxx. With an appropriately designed
threshold of the subsequent stage this creeping behavior can
be transformed into a so-called late transition where the output
of that stage shows a clean transition (i.e. fast crossing of the
intermediate levels) but only after metastability has resolved.
However, with a single threshold (i.e. without hysteresis) one
also introduces the risk of glitches [3].

Metastability is a very undesired phenomenon, as Vmeta
may, beyond the above-mentioned glitches, lead to different
(“Byzantine”) interpretations by input stages it supplies (as
these will most likely have slightly different thresholds), while
a late transition can cause timing violations downstream.
Unfortunately, in general it can not be avoided completely.

Note that the above applies to bistable storage elements,
whose metastable behavior is already well researched – we
will have to revisit this for the S/T.

B. Feedback Circuits
The arrangement shown in Fig. 1 represents the fundamental

layout of a feedback circuit. A linear voltage amplifier with
gain A receives as its input the sum of an external input voltage
and its own output voltage multiplied with a factor of k. Its
(static) transfer characteristic can be described by

G =
Vout
Vin

=
−1

k − 1
A

(1)

+

k

A
Vin Vout

Fig. 1: Basic structure of a feedback circuit

In the case of k < 0 we have negative feedback. For the
moment, let us assume A =∞. Then the arrangement operates
as an amplifier with (positive) gain G of −1/k. For k = −1
we feed back the full output voltage and obtain G = 1, i.e. a
voltage follower. For k = 0 we have no feedback, hence an
open loop. This arrangement resembles the function of an ideal
discriminator whose output assumes the positive saturation
voltage M in case Vin > 0 and changes to the negative
saturation2 −M as soon as Vin < 0.

2For simplicity of explanation we assume symmetric saturation voltages,
i.e. +M and -M here. Although the quantitative results will differ in the
asymmetric case, our reasoning and our basic conclusions will still hold.

With k > 0 we realize positive feedback. Now every little
change ε on the input produces a change on the output in the
same direction that gets fed back and thus further supports the
original input change by being added to ε. This self-supporting
chain ultimately causes Vout to run into positive or negative
saturation. In this situation the loop feeds back a voltage of
VFB = Mk (or −Mk, respectively) that must be compensated
in the summation by the input voltage, i.e. Vin < −Mk (or
Vin > Mk, respectively) to move the output to the other
direction, where it again saturates. This resembles the function
of a Schmitt-Trigger with hysteresis Vhyst = VH−VL = 2Mk.
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Fig. 2: Transfer characteristic of a feedback circuit

Fig. 2 shows the characteristics Vout over Vin for different
selections of k. We observe that for negative feedback we
have a unique mapping from Vin to Vout, while for positive
feedback Vout depends on the current state for VL ≤ Vin ≤
VH , i.e. we have a hysteresis behavior. Note carefully that
the saturation states are the only “truly” stable states of the
S/T. The line described by Eq. 1 describes the metastable
states only. A very intuitive explanation of this fact is that
for a given input voltage VL ≤ Vin ≤ VH we can draw a
vertical line to find the corresponding steady-state values of
Vout. This line has three intersections with the characteristic,
namely at the positive and negative saturation, as well as one
in between. Since we know that the saturation states represent
truly stable states, there must be a metastable state in between
– irrespective of the implementation. The transient behavior,
i.e. the transition from one saturation voltage to the opposite
one, depends on the dynamic characteristics of the circuit
which are not considered in the basic model in Fig. 1.

For a non-ideal amplifier with A <∞ we obtain a reduction
of the effective k by 1

A (see Eq 1). In case of negative feedback
this reduces the overall gain accordingly, and in case of the
S/T it moves the thresholds towards a reduced hysteresis.
The borderline case of discriminator operation now occurs for
k = 1

A . Apart from that shift in the value of G (that can
be compensated by appropriate dimensioning), all qualitative
findings from above, however, remain the same. In Fig. 2
we would, e.g., simply have to replace all instances of k by
k − 1

A . Furthermore, a reference voltage can be added to the
feedback path to create a hysteresis that is no more centered
around Vin = 0. Again, while this shift obviously changes the
quantitative results, the qualitative findings still hold.

C. Schmitt-Trigger Implementation
A straightforward implementation of the principle from

Fig. 1 is by means of an operational amplifier (OpAmp). Since



OpAmps usually have a high gain, this implementation is close
to the ideal case of A→∞.

For negative feedback the feedback path is simply connected
to the inverting input, thus effectively realizing the negative
sign. For positive feedback the non-inverting input of the
OpAmp must be used, which leaves only the inverting input
for connecting Vin. This means that from the view of the input
voltage the function of the S/T circuit is inverting.

In both cases a resistive voltage divider can establish |k| =
RB

RA+RB
< 1, and the feedback path can be augmented with a

reference voltage source VR that will create a horizontal shift
of the characteristic. In case of positive feedback this results
in a shift of the threshold voltages by an amount of (1−k)VR.

In digital CMOS logic circuits OpAmps are expensive to
realize. Therefore a different circuit structure has become
common, namely a kind of extended inverter stack with
feedback from the output, as shown in Fig. 3.
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Fig. 3: Conventional CMOS S/T implementation (from [9])

There are different variations to this basic scheme, targeting
at low supply voltage [10] or adjustable thresholds [11], [12].
In [9] a detailed mathematical analysis of this circuit is given.

D. Metastability Model for the Schmitt-Trigger

There has been (and sometimes still is) uncertainty whether
or under which circumstances a S/T is prone to metastability,
as its function of classifying an input voltage (rather than
storing data) appears combinational. However, as Fig. 2 and
the associated explanation in Sec. II-A show, every positive
feedback circuit must have a metastable state. Note, that this
curve resembles a general model of a positive feedback circuit
without being limited to a specific implementation.

Fig. 4 shows how an RS-latch can be constructed from a
S/T. This gives an intuition that the latter must have storage
capabilities. It also indicates that building a perfect S/T is
equivalent to building a perfect RS-latch, which we know is
impossible [7].

There has also been quite some debate on whether a S/T can
be applied to construct a synchronizer flip flop that is immune
against metastability (e.g. [13], [2]). This discussion has been
resolved in a paper by Marino [1] in which he proposes a
dynamic model for the S/T circuit as follows: He augments

MP

MN

RP

RN

R

S

Q

VDD

Fig. 4: RS-latch implementation based on a S/T

the OpAmp realization with a low-pass (R0C0) at the output to
account for its dominant time constant, and thus approximates
the dynamic behavior in the model. He assumes another RC
element at the inverting input and a reference voltage VR to
obtain thresholds that are not bound to be symmetric around
0. A simplification of his model circuit used in this paper is
shown in Fig. 5. To be more general, we will, compared to
Marino’s circuit, drop the input RC element, and we use more
intuitive names (Vin for V2 and Vout for Vq).

−

+

Vin R0

C0

Vout

RA

RB

VR

Fig. 5: Dynamic model of the S/T inspired by Marino [1]

As the saturation requires separate treatment, his solution
comprises three regions, namely upper and lower saturation
(Regions 1 and 3), as well as the “linear region” 2 between
them. Fig. 6 illustrates his solution. Note that, according to
the implementation of the model circuit, this diagram applies
to an inverting S/T.
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Vout

Vin = RAVR+RBVout
RA+RB

− M
A

Vin = RAVR+RBVout
RA+RB

+ M
A

Vout = γ1

Vout = γ3

Vout = γ2

REGION 1

REGION 2

REGION 3

Fig. 6: Phase diagram for the S/T inspired by Marino [1]

The dashed lines in the figure represent the borders between
the regions (the corresponding equations are shown as well).



They are derived by determining those values for the OpAmp’s
differential input voltage for which it starts to saturate. Ul-
timately, Marino obtains the following equations (for their
detailed derivation please refer to the original paper):

Region 1:
dVout
dt

= V ′out = − 1

τ1
(Vout − γ1) (2)

This yields a decaying exponential function with time constant
τ1 ≈ R0C0 that asymptotically approaches the truly stable rest
point γ1 ≈M .

Region 2:
dVout
dt

= V ′out =
1

τ2
(Vout − γ2) (3)

This time we have a growing exponential function with time
constant τ2 ≈ R0C0

kA−1 that moves away from the metastable
rest point γ2 ≈ Vin−(1−k)VR

k− 1
A

. Note that this rest point now
depends on the input voltage.

Region 3:
dVout
dt

= V ′out = − 1

τ3
(Vout − γ3) (4)

Similar to Region 1 this yields a decaying exponential function
with time constant τ3 = τ1 ≈ R0C0 that asymptotically
approaches the truly stable rest point γ3 = −γ1 ≈ −M .

Marino uses this model to show that a S/T can neither be
used to build a perfect inertial delay element nor a perfect
synchronizer. Although his model clearly shows that a S/T may
indeed become metastable, in his argumentation he is mainly
concerned with the question of whether it can be driven to
produce runt pulses or glitches at its output. He shows that this
is indeed possible, even if restrictions for the input are applied.
He does, however, not consider other metastability effects like
transition delay or constant output voltage and under which
circumstances these occur. Similarly, Nyström and Martin [4]
as well as Greenstreet [5] limit their discussions to the special
case of monotonic input voltage only.

In this paper we build on Marino’s model, but extend
the scope towards typical use cases, validate the model for
a modern CMOS implementation, provide a more general
treatment of the metastable behavior of a S/T, and give a
deeper analysis of the case of monotonic input voltage than
in [4], [5].

III. ANALYSIS OF METASTABLE BEHAVIOR

A. Peculiarities in the Schmitt-Trigger’s metastable behavior

Fig. 6 suggests that a S/T can assume different metastable
points Vmeta; in fact along the whole line γ2. This is sub-
stantially different from what is known for typical bistable
storage elements, whose (internal storage cell’s) metastable
output voltage is confined to a single value in the Vxx range.
The metastable behavior of a latch cell has been first modeled
by Veendrick [14], and his analysis forms the theoretical
foundation of what we know about metastable behavior of
bistable storage elements today. So let us compare Marino’s
model with that used by Veendrick to spot the differences. In

both models a linear amplifier is employed, and its dynamic
behavior is approximated by a first order low pass. So not
surprisingly the solutions are exponential functions in both
cases and hence similar. However there are two important
differences:

1) For his latch circuit Veendrick assumes the input to be
decoupled (opaque state) and just studies the homoge-
neous behavior, while Marino, for his S/T model needs
to leave the input voltage connected all the time. As
a result, Marino’s solution shows a dependence of the
metastable rest point on the input voltage in Region 2,
rather than just a single metastable point.

2) As a consequence of (1), Veendrick could concentrate
his analysis on the proximity of the metastable point,
while Marino had to consider the whole operating range
and therefore needed the case separation.

So (1) gives us an intuitive confirmation why the S/T has a
whole range of metastable points. Conceptually, this appears
to be due to the fact that, having only one input, the S/T
derives its trigger for the state change from the amplitude of
this single signal, making a constant observation necessary,
while all bistable storage elements have two inputs and can
hence decouple either of them temporarily.

B. Regular operation

We will base most of our reasoning on the phase diagram
(Fig. 6). So let us first observe the normal operation of the
S/T there: We start in the positive saturation in Region 1 (for
the rest of the paper we will always consider the positive sat-
uration as a starting point, while due to symmetry, equivalent
arguments can be given for starting in the negative saturation)
As we increase Vin we move along γ1 until we reach VH . Up
to this point we have no freedom in choosing the trajectory,
and the shape of Vin is irrelevant. Only after crossing VH the
S/T will leave the stable state and start moving towards the
negative saturation. During this phase – and only then – we
have the opportunity to manipulate the trajectory and force the
S/T back to the initial state, or maneuver it into a metastable
state. Here the shape of Vin matters a lot. We will investigate
more details on that later. Once in the negative saturation, the
same procedure starts over in the other direction.

C. Monotonic input

Let us again start on some point along γ1. Exceeding
VH then implies a positive slope of Vin, and all trajectories
reachable with a monotonic Vin are hence within the half plane
Vin > VH where there is no metastable point (recall that the
latter are all located on γ2). In fact Vin need not even be
monotonic, as long as it does not fall back to below VH .

Fig. 7 shows the first derivative dVout/dt over the phase
diagram according to Eq. 2 to 4. We have chosen A = 10 for
this plot, which is way too low for a typical OpAmp, but for
higher values Region 2 would be hard to recognize (its width
is just 2M

A ). V ′out represents the speed at which the trajectory
is pulled upward (V ′out > 0) or downward (V ′out < 0) by the
internal dynamics of the circuit. We observe that if, starting
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Fig. 7: Derivative of the output voltage over the phase diagram

from positive saturation, we apply a step function to move
to an operating point very close to but above the threshold,
say (Vin, Vout) = (VH + ε, γ1) the downward speed V ′out is
close to zero, so Vout will initially change very slowly. This
suggests we obtain a slow output transition. To determine the
duration of this transition, let us first assume our step input
takes us right into Region 3, i.e. ε > 2M

A . Then for constant
Vin = VH + ε, Eq. 4 predicts a decaying exponential function
from γ1 towards γ3 according to

Vout(t) = (γ1 − γ3) · e
−t
τ3 + γ3 (5)

Now we assume a threshold Vth for the subsequent stage
to recognize Vout as being LO with Vth = γ3 + σ · (γ1 − γ3),
with 0 < σ < 1 giving the proportion of the swing that Vth
is apart from the final value (that is reached asymptotically).
This value will be reached with a delay of

DIII = τ3 · ln
(

1

σ

)
(6)

after having applied the input step. Note that, as long as we
remain within Region 3, this value is independent of Vin (and
hence ε) and therefore stays the same, even if we apply larger
steps. It is the minimum switching time of the S/T.

For ε ∈ [0, 2M
A ] we start the trajectory in Region 2. Again

with constant Vin it will move downward and cross the
boundary to Region 3 at some point. Up to that point Vout
will follow a growing exponential function according to

Vout(t) = −
ε+ γ1−M

A

k − 1
A

· e
t
τ2 +

γ1k − M
A + ε

k − 1
A

(7)

and the time needed for the trajectory to move through
Region 2 becomes approximately

DII = τ2 · ln
(

2M

Aε

)
. (8)

At the region boundary the decaying function from Eq. 5
will take over. Fig. 8 shows a simulation result (for details on
the setup see Section IV) that illustrates the situation.

The transition time is the sum of D = DII + DIII (with a
small error due to DIII actually being valid for the full swing).
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Fig. 8: Falling output transitions for different ε in mV

The simulation results for the CMOS implementation shown
in Fig. 8 confirm that the simplified OpAmp model does a
good job in predicting the behavior. In particular one can verify
that DII dominates, especially for small ε. It is interesting
to note that using Veendrick’s model [14] for calculating the
required resolution time Dmeta of a latch from a metastable
state yields, similar to our result, a Dmeta proportional to the
metastability time constant τC and to ln( 1

V∆
) with V∆ being

the initial voltage disparity.
The γn lines are by definition the only places where V ′out

becomes zero. So, due to the continuity of V ′out proven in [1],
the sign of V ′out stays the same as long as we do not cross a γn
line. This can also be verified in Fig. 7. As a consequence we
have a strictly decreasing Vout in the above cases of ε > 0,
even if the start may be arbitrarily slow. Although this can
be regarded as what is normally called a late transition in
the context of bistable elements, we have a fundamentally
different metastable behavior in the S/T: This late transition is
due to resolution of a metastable state that is associated with
a clean HI level. In contrast, for bistable storage elements the
metastable state is necessarily associated with resting at an
intermediate voltage in the range Vxx between the element’s
clean HI and LO outputs, and the late transition is a secondary
effect caused by applying a high or low threshold [3].

D. Producing a constant output voltage

Let us now study the possibility of driving the S/T into
an arbitrary metastable state: Assume we start again on γ1.
Once Vin exceeds VH our operating point is right of γ2,
and the internal dynamics of the S/T is moving us downward
(V ′out < 0). In order to reach a metastable operating point on
γ2 we need to reduce Vin fast enough to make the trajectory
intersect with γ2 before the negative saturation is reached. Due
to the inclination of γ2 the amount by which we have to reduce
Vin grows as Vout moves downward. In addition, V ′out < 0
becomes larger with the operating point’s distance from γ2.
So once that distance is large, it takes a highly dynamic
change in Vin to reach a metastable point. Contrariwise, when
staying close to γ2 right from the start, V ′out can be kept as



small as desired, leaving enough time for an arbitrarily slow
change in Vin to reach a metastable point on γ2 at any desired
intersection point.

As can be seen in Fig. 6, γ2 provides a one-to-one mapping
between Vin and Vout. So with an appropriate choice of the
final value of Vin (i.e. once having the threshold crossings
accomplished), any value of Vout can be selected. Notice that
this property allows us to freely select the metastable output
voltage of the S/T based latch sketched in Fig. 4 by proper
adjustment of the voltage divider.

E. Creating an arbitrary output shape

In principle, by appropriately navigating in the phase di-
agram one can obtain any desired shape of Vout: For every
current value of Vout an appropriate Vin can be applied to
obtain the desired gradient V ′out (by crossing γ2 even the
sign can be changed). However, with a limited range of Vin
only a limited range of V ′out can be covered (see Fig. 7); in
other words, the dynamics of Vout is naturally limited by the
system dynamics. The second limitation is the dynamics of
Vin. Assume an operating point with a horizontal distance X
and vertical distance of Y = α ·X from γ2, with α ≈ 1

k− 1
A

being the slope of the latter. According to Eq. 3 V ′out has a
value of Y

τ2
at this point. Moving the trajectory closer towards

γ2 takes a V ′in larger (in absolute value) than V ′out
α . So for a

given maximum gradient V̂ ′in, we obtain a maximum allowed
horizontal distance from γ2 of |X| < τ2 · |V̂ ′in|. Once the
operating point leaves this corridor around γ2, there is no way
of preventing the trajectory from approaching the saturation of
Vout in a monotonic trace (For a more elaborate and formal
treatment see [1]).

IV. EVALUATION

A. Setup and characteristic

To validate our analyses we implemented S/Ts based on an
ideal OpAmp, which matched the theoretical model perfectly,
a commercial OpAmp (Type EL5165), which showed only
minor deviations, and the CMOS circuit from Fig. 3 in
HSPICE. As the latter is substantially different from Fig. 5
we wanted to investigate whether Marino’s model sufficiently
covers its behavior. It was implemented using transistor pa-
rameters of a standard inverter cell from an industrial 65 nm
technology library, whereat despite a 2 fF output load no
interconnect parasitics were considered. The resulting input-
to-output characteristic is shown in Fig. 9. It matches the
theoretical model (Fig. 6) well, however γ2 turns out to be
not straight but shows an increased slope at the ends. It was
determined point by point, in each case starting a transient
analysis with a preset pair of V̊out and Ṽin. By sweeping
the value of Ṽin we determined the matching V̊in for which
the transient analysis showed stable behavior. The dots in the
figure represent V ′out, with gray dots for positive values and
black dots for negative ones, and with large dot size indicating
a large value. The large “corridor” around γ2 points to a wide
Region 2 and hence a low gain A. In addition, we observe a

dependence of V ′out on γ2 in the upper right and lower left
corner that is not present in the ideal model in Fig. 7. The
qualitative results from Section III, however, only require V ′out
to be consistently positive (negative) on the left (right) side of
γ2 and continuous, so they still hold.

We also analyzed the CMOS circuit using transistor equa-
tions to derive an analytical expression for γ2 (dashed line
in Fig. 6). By searching for equilibrium states, i.e. where a
constant input leads to a constant output voltage, an explicit
formula Vout(Vin) could be derived, assuming transistors M1

and M4 operate in their linear region and all others in the
saturation one. Unfortunately this assumption is only valid in
the middle of the metastable region; at the edges the transistors
M2 and M3 respectively M5 and M6 start to enter their linear
operation region. For that reason the analytic expression, while
matching with Marino’s OpAmp model, does not fit well to
the real curve near VH and VL.
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Fig. 9: Derivative of the output voltage over the phase diagram

B. Evaluation of the scenarios from Section III

Our claim was that monotonic input signals will always
lead to strictly monotonic outputs. In the simulation shown in
Fig. 10 we verified the worst case by applying a ramp input
stopping at a constant input voltage close to VH , i.e. VH + ε
(dark lines). One can clearly see that in both cases the output
transitions are very steep (all with about the same transition
time) but, as theory predicts, their delay varies significantly
even for small changes in ε.

Fig. 11 illustrates the observed dependence of the output
delay on ε in a more global scope. This nicely confirms Eq. 8.

Fig. 12 shows that it is indeed possible to force the S/T
to output arbitrary waveforms by means of non-monotonic
inputs. In the first part, the figure shows regular operation to
demonstrate the dynamics of the S/T as well as its thresholds.
Starting at 20 ns, the S/T is driven to output a 100 MHz
sine with 0.5 V swing. Note that this requires keeping the
S/T metastable. Finally, the simulated S/T is driven into
deep metastablity with the input being constant from 58 ns
simulation time. Here, the results of two simulations can be
seen. In the first, metastability resolves to VDD, in the second,
it resolves to GND.
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Fig. 10: Late transitions caused by ramp input going slightly
above VH

In the phase plot, it can be seen that the generation of the
slow (w.r.t. its regular switching speed) sine required to keep
the output close to the γ2 line. The resolution of the metastable
state can also be seen as vertical line segments at Vin ≈ 0.6V .

This verifies the predictions from Sections III-D and III-E. A
constant output voltage can either be generated as an arbitrary
waveform by actively controlling the input, or by forcing the
S/T into perfect metastability. As before, small changes at Vin
lead to huge variations in the time progress of Vout. The two
output traces shown in the figure correspond to input traces
only deviating in their final stable voltage by less than 0.1µV
(not distinguishable in the figure). Clearly, if the appropriate
voltage is set with a sufficient precision, it can take an arbitrary
time for the metastability to resolve.

Nevertheless, in these simulations we experienced that it
takes an extremely precise control of the voltage (nV) in order
to get close enough to γ2 such that slow inputs still create
visible metastability effects, as theory would predict.

V. PRACTICAL USE CASES

A. Handling of intermediate voltages

Often a S/T is applied as a means for converting the
intermediate voltage Vmeta produced by a metastable binary
storage element into a clean HI or LO, like e.g. in [3]. As we
have seen in our analysis in Section III-C this will actually
work under two important conditions:

(1) The input of the S/T must indeed be monotonic, at least
in the proximity of the thresholds. This can be easily accom-
plished in a typical setting, where the (single!) intermediate
output voltage Vmeta is near the middle of the supply range.
With thresholds chosen in appropriate distance from Vmeta
one can ensure that these are crossed only when metastabil-
ity is already resolving, i.e. with an increasing exponential
function that is strictly monotonic (for details see [14], [15]).
However, care must be taken that it is indeed the S/T that
decides upon the classification of Vmeta. As soon as any other
stage (decoupling buffer, e.g.) is in between the metastability-
producing element and the S/T, that element’s (single!) input
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Fig. 11: Observed dependence of output delay on ε

threshold will typically classify Vmeta in an undesired way.
More specifically, glitches can be produced [3], with the S/T
having no chance to mitigate these.

(2) A delay introduced by the S/T must be accommodated
in the timing of the subsequent logic. With properly selected
thresholds as outlined above we can assume steep input
transitions, so the S/T will not by itself introduce the arbitrary
resolution delay discussed in Section III-C. Still it may take an
unbounded time until the metastability of the bistable storage
element resolves, during which the S/T observes a constant
Vmeta at its input. As its threshold is crossed only after that,
the S/T appears to produce a late transition. This is actually an
intended behavior, useful for handling metastability in a value
safe system, like a speed-independent design [3].

Essentially, (2) is the reason why Chaney [2] and Kleeman
et al. [15] correctly state that the use of S/Ts is not beneficial
for avoiding metastability in a synchronizer and even degrades
the performance. Marino [1], on the other hand, was concerned
with inputs not limited to monotonic slope. Therefore his
conclusion was, similarly, that the S/T is not useful in avoiding
metastability. As we have laid out, however, for the special ap-
plication of filtering of intermediate voltages from a metastable
bistable storage element in value safe environments, the S/T
can be safely applied without any residual risk of metastability.

B. Slow inputs

It is sometimes hoped [6] that limiting the dynamics of
the input signal can prevent the S/T from getting metastable.
The intuition is that the S/T will have accomplished its state
change before a (slow) change in the input voltage has had
a chance to move the trajectory towards a metastable point.
Our analysis in Section III-E has re-confirmed Marino’s result
that one can always find a corridor around γ2 small enough to
allow an appropriately controlled Vin to still reach a metastable
point, no matter how restricted its dynamics (V̂ ′in) may be.
However, as our simulation experiments showed, it takes an
extremely precise control of Vin to remain in a sufficiently
narrow corridor. So while limiting V ′in cannot safely rule out
metastability of the S/T, it does aid in making metastability
less probable.
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Fig. 12: Simulation trace and phase diagram of an S/T driven to produce regular transitions, an arbitrary (here sine) waveform
and to enter and resolve deep metastability

C. Handling slow monotonic inputs

We have given evidence in Section III-C that a S/T can
map arbitrarily slow monotonic inputs to steep, practically full-
swing transitions. However, metastability can still occur and
cause a seemingy sporadic transition during a period with an
unchanging input voltage.

One example of such an application is the S/T D-latch
implementation from [5], where the application requires han-
dling glitches on the enable input. The input stack is a tri-
state inverter that propagates the data input when the latch
enable is high, and has a floating output (assumed constant)
else. The resulting monotonic signal is fed into a S/T. The
author correctly recognizes that even in presence of glitches
on the enable input, the S/T would always correctly output
steep transitions, albeit with an arbitrary delay.

Another example is the integrator used in the synchronizer
and clock to handshake circuits in [4]. Here a precharged high
signal is driven low (or vice versa) depending on the state
of an external, unstable input. It is also correctly argued that
a S/T converts these monotonic inputs to steep transitions,
however, the possibility that a signal driven slightly beyond
the S/T’s threshold and left at that constant voltage may cause
arbitrarily delayed output transitions, is not further pursued.
The subsequent circuits, being delay insensitive, can tolerate
such delayed transitions, however one should be aware of the
possibility for such timing variations.

VI. CONCLUSION

We have revisited existing results on S/T metastability, most
notably those from Marino [1], and extended them to elaborate
a general understanding of this effect and give well founded
answers to a couple of practical questions. In this sense our key
contributions are to clearly pinpoint the differences between
S/T metastability and that of bistable storage elements, to
provide simulation results from a realistic CMOS implemen-
tation that back up theoretical results (shape of characteristic,
V ′out over the phase diagram), to elaborate and validate a
function for the output delay, to give solid evidence for the
appropriateness of using a S/T for metastability filtering in the
value domain, and to elaborate on the benefits of limiting the
dynamic range of Vin.

Limitations lie in idealizations made in the process of mod-
eling, like the first-order approach for the dynamic behavior,
ignoring parasitics, noise and the curved shape of the γ2 line.
In our simulations we have found confirmation that the errors
thus introduced are acceptable and therefore the key effects
are well reflected in the model, but more details should be
explored here, especially for new technologies.
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