
Software Architecture Evolution
of Collective Intelligence Systems

into System-of-Systems Farm Platforms

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Elisabeth Pilz, BSc
Matrikelnummer 01225231

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr. Mag. Stefan Biffl
Mitwirkung: Angelika Musil

Jürgen Musil

Wien, 2. April 2019
Elisabeth Pilz Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Software Architecture Evolution
of Collective Intelligence Systems

into System-of-Systems Farm Platforms

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering and Internet Computing

by

Elisabeth Pilz, BSc
Registration Number 01225231

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. Mag. Stefan Biffl
Assistance: Angelika Musil

Jürgen Musil

Vienna, 2nd April, 2019
Elisabeth Pilz Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Elisabeth Pilz, BSc
Luegstraße 13, 3340 Waidhofen/Ybbs

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. April 2019
Elisabeth Pilz

v

Acknowledgements

This work was conducted in the context of the Christian Doppler Laboratory for Security
and Quality Improvement in the Production System Lifecycle (CDL-SQI), Institute of
Information Systems Engineering, TU Wien. The financial support by the Christian
Doppler Research Association, the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technology and Development is
gratefully acknowledged.

Many thanks to Prof. Biffl for his supervision and his constructive feedback to improve
my thesis. Another special thanks goes to Angelika Musil and Jürgen Musil who provided
this interesting research topic and gave me helpful suggestions and permanent feedback.

Special thanks to my family and my friends who supported and motivated me during my
studies. Thank you for all your warm words and for making my life bright and sunny.

vii

Kurzfassung

Collective Intelligence Systeme (CIS) sind webbasierte Plattformen, die das Wissen von
vernetzten Personengruppen nutzen. Ein CIS lebt von seinen Benutzern, die Inhalte
zu einem gemeinsam global genutzten Informationsraum beitragen und dadurch auch
ihr Wissen erweitern können. Ein CIS kann für verschiedene Arten von Wissensbasen
nützlich sein, die rund um ein bestimmtes Thema gruppiert und organisiert sind. Daher
möchten Betreiber solcher Plattformen die Systemfunktionen für Anwendungen mit
ähnlichen Strukturen wiederverwenden. Dies führt jedoch zu Kopien von Instanzen, die
nur mit unterschiedlichem Wissen gefüllt sind, und sich mehr oder weniger unabhängig
vom ursprünglichen System weiterentwickeln. Dieser Ansatz führt jedoch zu mehreren
Herausforderungen und Einschränkungen, wie z. B. die komplexe Weiterentwicklung der
Systemtechnologien, ein hoher Verwaltungsaufwand, verschiedene Benutzerkonten für
eine Person und keine instanzübergreifende Verknüpfung von Wissen.

Um diese Einschränkungen zu beheben, wurde in dieser Arbeit ein neuer Architektur-
ansatz entwickelt, die CIS Farmarchitektur. Bei diesem Architekturansatz sind mehrere
CIS Instanzen in eine Systemumgebung eingebettet. Dieser Ansatz bietet Funktionen
zum Erstellen, Bereitstellen und Verwalten unabhängiger Farmentitäten. Im Kontext
einer CIS Farm wir eine CIS Instanz als Farmentität bezeichnet. Der Schwerpunkt der
Forschungsfragen lag auf den Merkmalen, der Entwicklung und der Evaluierung des
CIS Farm Ansatzes. Die Hauptbeiträge dieser Arbeit gliedern sich in die Definition der
architektonischen Prinzipien, die Beschreibung des CIS Farm Architektur Designs und
die Entwicklung eines Evolutionsprozesses von einem CIS zu einer CIS Farm Architektur.

Die Beiträge dieser Arbeit wurden an einem praktischen Beispiel angewandt - der Glossar
Plattform. Die Glossar Plattform ist ein CIS, bei dem mehrere Benutzer geografisch
unabhängig zusammenarbeiten, indem sie eine gemeinsam genutzte Online-Plattform
verwenden, um eine Ansammlung von Begriffen mit zugehörigen Definitionen zu verwalten.
Nach der Implementierung wurde die Glossary Farm durch eine Anwenderstudie evaluiert.
Die Teilnehmer stimmten der Aussage zu, dass die Glossary Farm den Aufwand für die
Erstellung, Verwendung und Verwaltung eines Glossars reduziert, und weitere wichtige
Funktionen bereitstellt.

Zusammenfassend bieten die Beiträge dieser Arbeit eine gute Grundlage für die Imple-
mentierung einer CIS Farm. Eine CIS Farm hat den Vorteil, dass mehrere Instanzen in
eine Systemumgebung integriert sind und das Wissen darüber verknüpft werden kann.
Darüber hinaus kann der Administrationsaufwand drastisch reduziert werden.

ix

Abstract

Nowadays, the interest in networked and collectively created knowledge bases grows
rapidly. Collective intelligence systems (CIS) are web-based social platforms that use the
knowledge of connected groups of people. A CIS thrives from its users, who contribute
content to a globally shared information space. Each human actor benefits from the
available shared information and can expand her knowledge. CIS may be useful with
different kinds of knowledge base content, grouped and organized around a specific
topic. Therefore operators of these platforms want to reuse the system capabilities for
knowledge with similar structures. Today, this need leads to instance clones, where simply
a copy of the CIS is filled with new knowledge and evolves more or less independently
from the original system. This approach has several challenges and limitations, such as
complex system technology evolution, impossible data analysis across knowledge bases,
high administration effort, various accounts for one person and no cross-instance linking
of knowledge.

To resolve these limitations, we designed a new architectural approach, the CIS farm
architecture. Within a CIS farm architecture, several CIS instances are embedded into
one system environment. Therefore this approach provides functions to simply create,
deploy and administrate individual and independent farm entities. In the context of a
CIS farm we call a CIS instance a farm entity. The focus of the research questions is
on the characteristics, the evolution and the evaluation of the CIS farm approach. The
main contributions of this thesis are the definition of the architectural principles, the
description of the CIS farm architecture design and the development of an evolution
process from a CIS to a CIS farm architecture.

The contributions of this thesis were applied using a practical example - the Glossary
Platform. The Glossary Platform is a CIS where multiple users collaborate geographically
independent by using a shared online platform to administrate a collection of terms with
associated definitions. Afterward, the Glossary Farm was evaluated by conducting a user
study. The participants agreed with the statement that the Glossary Farm could reduce
the effort of creating, using and maintaining a glossary and provides some important
features.

In summary, the contributions of this thesis provide a suitable foundation for the
implementation of a CIS farm. A CIS farm has the advantage that several instances are
integrated into one system environment and the knowledge of these can be cross-linked.
Furthermore, the administration effort can be reduced dramatically.

xi

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1
1.1 Motivating Example . 2
1.2 Problem Statement . 3
1.3 Contributions of this Thesis . 5
1.4 Thesis Structure . 7

2 Background & Related Work 9
2.1 Software Architecture . 9
2.2 Collective Intelligence Systems . 13
2.3 System of Systems . 20
2.4 Multi-Tenant Systems . 24
2.5 Software Evolution . 32
2.6 Summary . 37

3 Research Questions and Approach 39
3.1 Research Challenges . 39
3.2 Research Questions . 41
3.3 Research Methodology . 42

4 Survey of CIS Farm Platforms 45
4.1 Survey Design . 45
4.2 Survey Results . 50
4.3 Summary . 54

5 Application Scenario: The Glossary Platform 57
5.1 Definition of a Glossary . 57
5.2 Available Glossary Solutions . 59
5.3 Requirements for a Modern Glossary System 62
5.4 Glossary Platform as Collective Intelligence System 65

xiii

6 Characteristics of a CIS Farm Architecture Design 71
6.1 System Characteristics . 71
6.2 Benefits of a CIS Farm Architecture 74

7 Farm Architecture Design for CIS 75
7.1 Terminology & Structure . 75
7.2 Delimitation to other Architecture Styles 76
7.3 Architecture Overview . 77
7.4 Application of CIS Farm Architecture 83

8 CIS Farm Evolution Approach 85
8.1 Prerequisites . 85
8.2 Evolution Process . 86
8.3 Data Migration Process . 89

9 Application of CIS Farm Architecture Design Approach 91
9.1 Initial System . 91
9.2 Evolution to CIS Farm Architecture 92
9.3 Development of Prototype . 101
9.4 Lessons Learned . 111

10 Evaluation 113
10.1 Study Design . 113
10.2 Results . 118

11 Discussion 125

12 Conclusion 133

Appendix 137
A.2 Structure of the Questionnaire . 139

Acronyms 143

List of Figures 145

List of Tables 149

Bibliography 151

CHAPTER 1
Introduction

In the last decades new forms of knowledge creation and sharing have emerged. The new
forms of web-based social platforms have the capability to use the collective intelligence
of connected groups of people. For instance, social networks enhance the collective
knowledge every time users publish new content [1]. All these systems can be regarded
as Collective Intelligence Systems (CIS), which aggregate and distribute information and
content among their user base in an efficient way [2]. A key characteristic of CIS is that
the shared information is focused around a certain topic. Therefore it is possible that
various instances of one system exist for different communities. Examples for CIS are
wikis and the online encyclopedia Wikipedia1, review and rating platforms like Yelp2 or
question and answer platforms like StackOverflow3.

Although collective intelligence already existed before the Internet, the Internet opened
the possibility to gather information from thousands or even millions of people [3]. Each
person has different knowledge and information of specific topics. A CIS is formed
when this knowledge is collected centrally on a platform and therein shared with a user
community [4]. CIS may be useful with different kinds of knowledge base content, grouped
and organized around a specific topic. Therefore operators of these platforms want to
reuse the system capabilities for knowledge with similar structures. Today, this need
leads to instance clones, where simply a copy of the CIS is filled with new knowledge and
evolves more or less independently from the original system. However, this approach has
two major challenges, which are (1) system technology evolution [5], i.e., fixing technical
defects and capability evolution in a family of systems and (2) integrated data analysis
across knowledge bases.

1https://www.wikipedia.org, last visited at 03.01.2019
2https://www.yelp.com, last visited at 03.01.2019
3https://www.stackoverflow.com, last visited at 03.01.2019

1

https://www.wikipedia.org
https://www.yelp.com
https://www.stackoverflow.com

1. Introduction

1.1 Motivating Example

To motivate the need we introduce the Glossary Platform as an example, which will be
used in the rest of this thesis. A glossary is a collection of terms with associated definitions,
either to a particular domain or to a specific project. For example, a glossary is used in
research collaborations to reduce terminological misunderstandings and inconsistencies
by providing a single agreed definition for a particular term. The Glossary Platform is a
CIS where multiple users collaborate geographically independent by using a shared online
platform. This online platform is used to collect and share terms across all scientists. Each
scientist benefits from the available shared information from others and is encouraged to
contribute her own knowledge [4].

The Glossary Platform is a prototype developed at TU Wien and is already in use
for projects of the Institute of Information Systems Engineering, e.g., the CDL-SQI
Glossary4 that is used in a research project. Currently, a separate glossary instance for
each research collaboration is created and deployed. This leads to several limitations,
such as:

• Large number of instances
A new Glossary instance has to be created and deployed for every research project or
community. As a result, one can quickly lose the overview of all available Glossary
instances. There is no central point where all Glossaries are listed and described. A
new Glossary instance can only be discovered when other researchers communicate
this or invite a scientist to contribute her knowledge.

• Many accounts for one researcher
If a researcher wants to contribute in several glossaries, she needs separate accounts
for each instance. Actually, this leads only to a duplication of data, because the
same account (for one person) has to be created several times.

• No cross-instance linking of knowledge
Currently, it is not possible to link terms across different instances. A Glossary
instance is a self-contained system without any external interfaces. Therefore, it is
not possible to network glossaries and link knowledge across various instances. So
it is impossible to collaborate across multiple domains.

• High administration effort
The maintenance of all the Glossary instances results in a significant effort for the
administrator. All instances must be maintained and kept up-to-date (product
updates and bug-fixes). Furthermore, the system administrator has to monitor all
instances to see, if they are still online.

4https://glossary-cdl-sqi.herokuapp.com, last visited at 15.06.2018

2

https://glossary-cdl-sqi.herokuapp.com

1.2. Problem Statement

• Limited data analysis
An analysis of the data is only possible per instance, an overlapping analysis across
various glossaries is not possible. Statistics about several instances must be created
manually if necessary. Furthermore, the activities of a user can only be tracked
per instance. Personalized summaries about multiple instances are therefore not
possible.

Figure 1.1 outlines the current limitations of the existing Glossary Platform. This view
illustrates some of the limitations as mentioned above, e.g., many instances, several
accounts for one researcher and no cross-instance linking of knowledge.

Figure 1.1: Limitations of the current Glossary Platform

1.2 Problem Statement
In the context of the Glossary Platform there are still more challenges than just system
technology evolution and integrated data analysis. Additional drawbacks are the number
of accounts for one researcher or that no cross-instance linking of knowledge is possible.
In the following, various approaches are discussed how to create a network of glossaries.
Every approach has its own advantages and disadvantages.

3

1. Introduction

Instance clones

Instance clones are mostly used to make copies of platforms and to fill than with new,
different knowledge. With this approach the administration effort increases enormously,
since fixing technical defects or capability evolution must be carried out separately for
each instance. Other disadvantages have already been discussed in detail in the previous
section. The main advantage of this approach is that a new Glossary can be created
without any implementation effort. Only a new instance needs to be created and deployed.

All in one

In principle, it would be possible to collect the whole knowledge in one Glossary. Some
of the limitations would be annulled, but other new problems would be created. This
approach possesses only one instance. Thereby the administration effort can be reduced.
Besides, scientists have only one account, and the data analysis is possible in greater
detail. New emerging problems incluce (1) no differentiation of communities possible and
(2) the loss of clarity. Moreover, some terms in different domains have another meaning,
so a wide variety of definitions for one term exists. As a result, the comprehensibility
is lost since nobody knows which definition of a term belongs to which domain. In
conclusion, this approach is unsuitable because the emerging problems are too serious.

Virtualization

An appropriate solution for the maintenance issue would be virtualization. The ad-
vantages of virtualization are (1) resource sharing, i.e., the underlying hardware can
be shared between all virtual machines (VMs), (2) isolation, i.e., applications can be
executed in different virtual machines, (3) dynamical provision of a VM and (4) dynamic
moving of a VM among different servers [6]. There are several levels of virtualization, the
most appropriate type for the Glossary environment scenario would be the Operating
System-level virtualization or container-based virtualization. Containers are isolated,
but share the same operating system and kernel. The advantage of this is mainly the
performance since near-native speeds can be achieved [7].

Figure 1.2 illustrates the container-based virtualization of the Glossary environment.
Each container encloses a glossary and isolates the application. Therefore, updates or bug
fixes in the application can be automated via routines. New containers (glossaries) can
be easily created with the use of a template. With virtualization the cost of maintenance
can be dramatically reduced. However, limitations arise in the integrated data analysis
and sharing of data across different containers (knowledge bases). The container-based
approach allows only data analysis per Glossary or the exchange of data between different
instances via a dedicated interface (no cross-instance linking possible). In summary, the
virtualization approach eliminates not all limitations.

4

1.3. Contributions of this Thesis

Figure 1.2: Container-based virtualization of the Glossary environment

Because the previously described approaches eliminate not all limitations, it may be
worth considering to investigate a new architecture approach for such CIS. The new
approach should offer a possibility to integrate all Glossary instances in one environment
and try to eliminate all outlined issues.

1.3 Contributions of this Thesis

The existing approaches are not sufficient to create a network of CIS. Possibilities which
are well-known at the moment have too many disadvantages and meet not the require-
ments of a network of identical systems. A kind of system-of-systems approach is needed,
where the individual glossaries are integrated into one enclosing system. All glossaries
in this union should have the same functions, but filled with different knowledge from
varying user communities.

An initial literature study identified two related, but different concepts for this union.
Firstly, System of Systems (SoS), where independent software systems are working to-
gether to fulfill a mission that no system could provide alone [8]. Secondly, Multi-tenancy
Systems, where tenants share resources such as hardware and software, without neces-
sarily sharing data [9]. However, these concepts only provide ideas for a new suitable
architecture design, because they do not meet the criteria for a network of CIS. An
architecture design approach is needed, where (1) on a single, shared platform multiple
instances can be hosted, (2) administrators can effortlessly create and maintain instances,
(3) knowledge can be linked across various instances, and (4) an integrated data analysis
across knowledge bases is possible.

A promising approach presents the architecture concept of WikiFarms, where a ”farm”
grows wikis [10]. A farm platform is a sort of system-of-systems, where several CIS are
integrated into one application. A single CIS in the farm design is called Farm-Entity.
However, this concept can only be found in a few practice examples and has not yet

5

1. Introduction

been scientifically studied. Therefore, a main contribution of this thesis is to describe
a generalized farm architecture design for CIS and implement and evaluate that in the
context of the Glossary use case. Figure 1.3 illustrates the target structure of the so
called Glossary Farm design. The basic concept of a farm platform is to provide functions
to simply create, deploy and administrate individual and independent farm entities to
reduce the administration effort. Further advantages are for example (1) only one account
per user and (2) link knowledge across various farm entities.

Figure 1.3: Glossary Farm Structure

Figure 1.4 presents an overview of the main contributions of this thesis. Initially a study
of related work and a review of existing farm platforms are performed. Based on the
review, CIS farm architectural principles are identified. This includes a specification of
the system characteristics and the user needs. These results flow into the description
of the CIS farm architectural approach, which is divided into the following components,
(1) the CIS Farm Meta-Model, which illustrates the core elements and processes of the
evolved architecture, (2) the CIS-EVO-Farm Approach, which describes a process that
supports the architecture evolution of a CIS into a CIS farm platform. To verify the
designed architecture approach, a prototype is implemented in the context of the Glossary.
For this purpose, the requirements of a modern Glossary system are collected. The major
benefit of the Glossary Farm is to ensure an efficient collection and sharing of knowledge.
The designed approach is implemented in a Glossary Farm, which is finally evaluated in
a user test and a survey.

6

1.4. Thesis Structure

Figure 1.4: Overview of the main thesis contributions

1.4 Thesis Structure
The remainder of this thesis is structured as followed: Chapter 2 summarizes background
information and related work for this thesis by starting with a general introduction of
software architecture and collective intelligence systems, followed by an overview of similar
architectural approaches to a farm platform. Chapter 3 defines the research questions and
outlines the research methodology to answer the identified research questions. Chapter
4 focuses on the identification and comparison of existing farm platform approaches in
practice. In Chapter 5 the needs and benefits of a modern glossary are presented and the
Glossary Platform as a CIS is described. Chapter 6 presents the system characteristics

7

1. Introduction

and benefits of a CIS farm architecture design. Chapter 7 delimits a farm to similar
architectural approaches and presents the developed farm architecture with the the
meta-model and describes the stigmergic process of a CIS farm. In Chapter 8 the
CIS-EVO-Farm approach is introduced, which is a light-weight process to support the
architecture evolution of a CIS into a farm platform. Chapter 9 describes the developed
Glossary Farm and discuss problems during the implementation process. In Chapter 10
the results of the evaluation are summarized and analyzed. In Chapter 11 the findings of
this thesis are discussed. Finally, Chapter 12 concludes this thesis and gives directions
for further research work.

8

CHAPTER 2
Background & Related Work

This chapter summarizes background information and related work in the context of
this thesis. First, a brief introduction to software architecture and collective intelligence
systems is presented. Afterward, system-of-systems and multi-tenancy systems are
discussed. Finally, software evolution is described.

2.1 Software Architecture

In this section we introduce software architecture and discuss its importance. Through a
well-defined architecture key requirements can be fulfilled and the quality of the final
product can be increased.

2.1.1 Definition

Over the last few decades, software architecture has evolved into an essential and im-
portant subfield of software engineering. A critical point in the design and construction
of complex software system is the architecture. With the help of a good architecture
key requirements are satisfiable, bad architecture leads to possibly fatal consequences [11].

Bass et al. [12] noticed that software architecture:

”[...] consists of structures and structures consist of elements and relations, it
follows that an architecture comprises software elements and how the elements
relate to each other.”

Another widely used definition in the literature was provided by Shaw and Garlan [13]:

9

2. Background & Related Work

”[...] involves the description of elements from which systems are built,
interactions among those elements, patterns that guide their composition, and
constrains of these patterns. [...] a particular system is defined in terms of a
collection of components and interactions among those components.”

Taylor et al. [14] mentioned three fundamental methods of understanding architecture:

• Every application has an architecture.

• Every application has at least one architect.

• Architecture is not a phase of development.

The core message of the numerous definitions of software architecture states that the
architecture of a system describes its gross structure. This structure highlights the top-
level design decisions, including numerous things like how the system consists of interacting
parts, where the main pathways of interaction are and what the main characteristics of
the parts are. Software architecture can be seen as a bridge between requirements and
implementation, compare figure 2.1. Through an abstract description of the system, the
architecture exposes certain properties while others remain hidden [11].

Figure 2.1: Software architecture as a bridge between requirements and implementation
[11]

Software architecture plays an important role in several aspects of software development.
For example, software architecture simplifies our ability to easily understand a high-level
design (Understanding), through a partial blueprint, key components and dependencies
between them are easier to identify (Construction) and the architectural descriptions
supports the reuse at multiple levels (Reuse) [11].

10

2.1. Software Architecture

2.1.2 Software System Life Cycle

Figure 2.2 shows the life cycle of a software system and the location of the architecture in
it. As already mentioned, the software architecture links the requirements analysis with
the realization. It can be incrementally researched and defined. The software architecture
has to be stable before main development can be initiated. A software architecture can
be considered as a blueprint and a guideline for the realization.

According to Qian et al. [15], an architecture style ”contains a set of rules, constraints, and
patterns of how to structure a system into a set of elements and connectors”. Architectural
styles narrow the solution area when creating architectures. First of all, styles define
which elements can exist in an architecture (like components, connectors). Secondly,
they define rules for the integration of these elements into the architecture. Furthermore,
styles address non-functional issues (like performance) as every style manifest its own
qualities [16].

Figure 2.2: Software system life cycle [17]

11

2. Background & Related Work

The most important components of an architectural style are therefore [15]:

• elements, that perform functions required by a system

• connectors, that enable communication, coordination, and cooperation among
elements

• constraints, that define how elements can be integrated to form the system

• attributes, that describe the advantages and disadvantages of the chosen structure

Clements et al. [18] assigned architecture styles to three different viewtypes. A viewtype
restricts the set of elements and relations that exist within a view. First, the mod-
ule viewtype documents the systems principal units of implementation. Secondly, the
component-and-connector (C&C) viewtype documents the systems units of execution.
Thirdly, the allocation viewtype maps software elements to its development and execution
environments. Some common examples of architectural styles are decomposition style,
layerd style, publish-subscribe style, client-sever-style, peer-to-peer style, deployment
style and implementation style [18].

Each architecture has several pros, cons and potential risks. Choosing the right style
to fulfill the required functions and quality features is essential. Quality attributes are
identified in the requirements analysis. Quality attributes can be categorized in three
main groups: (1) implementation attributes such as maintainability and scalability, (2)
runtime attributes such as security, usability and availability and (3) business attributes
like time and cost [15].

There are a variety of design principles for each software architecture, that should
minimize costs and maintenance requirements and maximize usability and extendibility
[19]. Five key principles are [19, 20]:

• Separation of concerns
The components of the system should be split into certain functions, so that there
is no overlap in functionality. Essential is minimization of interaction points, which
results in a high cohesion and low coupling.

• Single Responsibility Principle
Each module or component of a system should have only one specific responsibility.
This should help the user to understand the system easily and it should furthermore
help with the integration of the component with other components.

• Principle of Least Knowledge
Each component should not know about internal details of other components. This
approach avoids interdependence and helps maintainability. This principle is also
known as Law of Demeter (LoD).

12

2.2. Collective Intelligence Systems

• Don’t repeat yourself (DRY)
The functionality of components should not be repeated, code should only be
implemented in one component. Duplicating functionality can make it difficult to
implement changes, reduce clarity and cause potential inconsistencies.

• Minimize upfront design
Only design what is necessary, as not all requirements may be clearly defined or the
requirements may change (agile development). This principle is sometimes known
as ”You ain’t gonna need it” (YAGNI).

2.2 Collective Intelligence Systems

As this work seeks to extend the applicability of CIS with similar structure, we discuss
hereafter the basics in detail. First we define collective intelligence and collective
intelligence systems. Then we describe the characteristic CIS process, which should
motivate users for further contributions. Finally, we explain an architecture approach for
designing CIS.

2.2.1 Definition

Collective intelligence (CI) is one of the greatest challenges of our time. A large group of
cooperating individuals produce higher-order intelligence, solutions and innovation as a
single entity [21]. People used the phrase collective intelligence for decades, thereby a
variety of definitions emerged. According to Lévy [22] CI can broadly defined as:

”[...] the capacity of human collectives to engage in intellectual cooperation
in order to create, innovate and invent”

Another definition is given by Malone et al. [23]:

”[...] groups of individuals doing things collectively that seem intelligent.”

The basic concept of CI is relative simple and exists without the use of technology. A
group of individuals, for example people, insects or robots can be smarter in a way than
every single member of the group. We can broadly define intelligence as ”the ability to
solve problems”. To call one system more intelligent than another system, it needs to solve
more problems in the same time interval, or find better solutions for the same problems.
A group has collective intelligence when it can find more or better solutions, than all
the solutions found by individual working members. A large number of organizations or
companies were founded with the assumption, that their members can do more together
than they could do alone [24].

13

2. Background & Related Work

CI may exist without the use of technology. Nevertheless, technological means and in
particular the Internet help the society to evolve their collective capabilities. This is
where collective intelligence systems comes to place [21].

Collective Intelligence Systems (CIS) belong to the family of socio-technical systems and
enable IT-mediated collective intelligence. As a socio-technical system, a CIS is driven
by its users, who contribute content to a globally-shared virtual information space, each
user benefits from the available shared information from other users [4].

At the beginning, the web was primarily one-directional, a large number of users viewed
the content of a relatively small number of websites. The new approach of Web 2.0 is a
bi-directional collaboration, where users are able to interact with websites and actively
provide new content. In addition, other users are able to access this new content [25].
Collective intelligence is one of the key themes of Web 2.0 coined by Timothy O’Reilly [26].

The majority of Web 2.0 applications serves a large web audience, whereas CIS can be
custom applications, designed for small, but highly specialized domains. Well-known
examples for such systems are wikis and the online encyclopedia Wikipedia1, review
and rating platforms like Yelp2 or question and answer platforms like StackOverflow3.
The essential CIS features are similar to the design patterns of Web 2.0 applications
[27]. Vergados et al. [28] took the seven principles from O’Reilly [29] and adopted them
in the context of CIS. Collective intelligence applications should fulfill the following
requirements (taken from Vergados et al. [28]):

1. Task specific representations
Domain specific collective intelligence applications should support views of the task
that are tailored to the particular domain.

2. Data is the key
Collective intelligence applications are data centric and should be designed to collect
and share data among users.

3. Users add value
Users of collective intelligence applications know the most about the value of the
information it contains. The application should provide mechanisms for them to
add to, modify, or otherwise enhance the data to improve its usefulness.

4. Facilitate data aggregation
The ability to aggregate data adds value. Collective intelligence applications should
be designed such that data aggregation occurs naturally through regular use.

1https://www.wikipedia.org, last visited at 03.01.2019
2https://www.yelp.com, last visited at 03.01.2019
3https://www.stackoverflow.com, last visited at 03.01.2019

14

https://www.wikipedia.org
https://www.yelp.com
https://www.stackoverflow.com

2.2. Collective Intelligence Systems

5. Facilitate data access
The data in collective intelligence applications can have use beyond the boundaries
of the application. Collective intelligence applications should offer web service
interfaces and other mechanisms to facilitate the re-use of data.

6. Facilitate access for all devices
The PC is no longer the only access device for internet applications. Collective
intelligence applications need to be designed to integrate services across handheld
devices, PCs, and internet servers.

7. The perpetual beta
Collective intelligence applications are ongoing services provided to its users thus
new features should be added on a regular basis based on the changing needs of
the user community.

2.2.2 CIS Process

An important concept of CIS is stigmergy, which was originally introduced by Grassé
[30] to describe the spatial coordination between termite societies. The term stigmergy
comes from the Greek, the components of the term mean ”mark” (stigma) and ”work”
(ergon) [24].

Heylighen [24] described the fundamental mechanism of stigmergy:

”[...] is that the environment is used as a shared medium for storing informa-
tion so that it can be interpreted by other individuals”

Differently to a spoken message, which is directed to a certain individual at a certain time,
a stigmergic signal can be taken by any individual at any time. A spoken message, which
does not reach its destination or is not understood is lost forever. In contrast, a stigmergic
signal permanently stores information in a stable medium, that is accessible to anyone [24].

In Summary, stigmergy describes the indirect communication between individuals, who
leave traces (knowledge) in the environment through various actions. Subsequent actions
by the same or other individuals expand the previous collective knowledge, which is a
benefit for every user. For example, Wikipedia is maintained by users all over the world
7 days a week and 24 hours a day by adding and modifying pages [31].

Musil et al. [4] described an essential CIS feature, the feedback loop. This represents the
connection between the user base and the computational system. On a global level, hard
accessible knowledge is continuously collected from situated individuals. Situatedness
of individuals means the ”physical, cultural and social context” that ”guides, constrains
and partially determines intelligent activities” [32]. On a local level, the consolidated
information is distributed back to the individuals. Each user benefits from new available

15

2. Background & Related Work

information of high quality in his local space. Furthermore, each user is animated to
continue the contribution of additional content into the globally-shared space. Therefore,
the feedback loop forms a bridge between the local and global space [4]. For a better
understanding a model of the CIS Process is graphically illustrated in figure 2.3, which
includes the following steps:

1. Actors contribute content to the shared computational platform.

2. The system analyses the content data and extracts consolidated information.

3. The system distributes the information extracts among its actors.

4. Information facilitates either the actors local activity or triggers a subsequent
content contribution (revisit step 1)

Figure 2.3: CIS process with content aggregation and feedback of information [4]

2.2.3 Stigmergic Information System Architecture Pattern

Currently, there are few research approaches to better understand and systematically
design CIS. However, research on CIS is an aspiring topic and in the following, these first
approaches are summarized. Musil et al. [2] defined the Stigmergic Information System
(SIS) architecture pattern that described CIS architectures. This pattern addresses the
problem of ”a lack of structured coordination to share and retrieve the knowledge and
information between human agents by using a software system”. Since knowledge and
information are distributed among individuals, it is difficult to be aware of it and gain
access to it collectively. The SIS pattern ”provides a minimal system description includ-
ing the common elements and processes of a CIS”. The SIS-based architecture design
eases bottom-up information sharing and aggregation of knowledge. Firstly, actors are
able to store user-generated content in topic-specific artifacts (create and modify them).
Secondly, CIS enable self-organizing knowledge transfer and coordination functions for
human groups and organizations.

16

2.2. Collective Intelligence Systems

The SIS pattern consists of the following three main layers and architectural elements
[33] and is illustrated in figure 2.4:

1. The Actor Base is a proactive layer of human agents that independently interact
with the system by performing activities on the CI artifacts, therefore contributing
content.

2. The Artifact Network is a passive layer that consists of CI artifacts that store
topic-specific content contributed by actors. CI artifacts are modified by actor
activities that are similar to various types of create, read, update, and delete
operations. One of the most important activities is the linking of artifacts using
artifact links, what leads to the creation of an artifact network. Each performed
activity is tracked in an actor record to assist the system in providing services such
as recommendations and shared interests, whereat each actor has its own actor
record. Furthermore, the actor record represents an existing ownership relation
between the actor and the CI artifacts. The ownership relationship specify who
owns an artifact, and thus has full control to decide (1) who can contribute to the
CI artifact and (2) if contributions meet predefined qualitative requirements.

Figure 2.4: SIS multi-layer model [33]

17

2. Background & Related Work

3. The computational Analysis, Management and Dissemination System (AMD)
represents a reactive / adaptive layer which execute different dissemination rules.
These rules generate filtered content from CI artifact content and actor records.
This filtered content is used by generated triggers, which are sent to individual
actors to disseminate changes of CI artifacts. Among other things this should raise
awareness of ongoing activities as well as stimulate subsequent actor activities and
artifact contributions in order to realize the stigmergic process.

An ongoing, self-organizing coordination cycle arises through the interdependence between
aggregation (collection of knowledge) and dissemination (making others aware of new or
modified knowledge). This represents the stigmergic process with an aggregation and a
dissemination phase [2].

Figure 2.5 shows the metamodel that underlies the SIS pattern, with the key elements
and their relations. Furthermore, it emphasizes the stigmergic process including the
aggregation (yellow) and dissemination (blue) phase [33].

Figure 2.5: Metamodel of the SIS pattern [33]

18

2.2. Collective Intelligence Systems

2.2.4 Architecture Framework for Collective Intelligence Systems

Traditionally, CIS are used at society or community level. Nowadays, there is a trend to
use the stigmergic mechanisms of CIS also at organization or corporate level. For example,
CIS are often used in form of corporate wikis4 to support knowledge exchange within
companies. Despite the wide spread of CIS, there is a lack of architectural principles and
guidance to design a CIS [31]. To address these problems, an architecture framework for
collective intelligence systems (CIS-AF) was developed by Musil et al. [31]. The CIS-AF
defines the key principles of CIS and provides guidance to the stakeholders for designing
CIS, which are well-suited for the goals of organizations. The CIS-AF comprises three
complementary viewpoints [31]:

• context viewpoint
This viewpoint describes the conventions to derive an architecture view, that frames
the usefulness and perpetuality concerns of architects, owners and actors that use
the system.

• technical realization viewpoint
This viewpoint describes the conventions to derive an architecture view that frames
the data aggregation, knowledge dissemination, and interactivity concerns of archi-
tects, owners, builders, and actors.

• operation viewpoint
This viewpoint describes the conventions to derive an architecture view, that frames
the kickstart and monitoring concerns of system managers and analysts of CIS.

Furthermore, the CIS-AF supports the six key features of CIS [31]. The first three
features include the ability of actors to add and change domain items and create links
between data items. The remaining features comprise system support for dissemination
of selected state changes to actors, user-driven recommendations and support for tracking
of usage behavior of actors [31]. This work builds on these results.

4https://www.atlassian.com/software/confluence, last visited at 03.01.2019

19

https://www.atlassian.com/software/confluence

2. Background & Related Work

2.3 System of Systems
In this section, we discuss a related architecture approach for the CIS farm architecture
approach. First, we define the system of systems architecture approach, before we
compare traditional software engineering with system of systems engineering. Finally, we
describe how SoS can be designed.

2.3.1 Definition

In the past software systems have become increasingly large and complex, because of the
interaction of several independent systems. As a result a new class of systems emerged:
Systems of Systems (SoS) [34]. Silva et al. [35] defined SoS in their work as follows:

”[...] a widespread set of independent, heterogeneous constituent systems to
form a larger system in order to accomplish a given mission, each constituent
system accomplishing its own individual mission and being able to contribute
to the accomplishment of the global mission of the SoS.”

SoS are formed when complex systems are joined together. This is the result when a
number of operationally and managerially independent software systems are working
together to fulfill a mission that no system could provide alone [8]. Each constituent
system fulfills its own specific mission and furthermore contributes to the goal mission of
the SoS. Through the collaboration of the constituent systems the goals of the global
mission of the SoS are achieved. [35].

In the literature five characteristics for SoS are frequently mentioned (taken from Guessi
et al. [8]):

• Operational Independence
Constituents have autonomy to execute individually.

• Managerial Independence
Constituents have their own life cycle and have autonomy for managing their own
resources.

• Emergent Behavior
Global functions are obtained by assembling different constituents together rather
than from a single constituent.

• Geographical Distribution
Constituents are not necessarily in the same environment.

• Incremental Development
New functions can be added, modified, or removed in accordance with emergent
needs of the SoS.

20

2.3. System of Systems

In his article Maier [36] identified three basic categories of SoS classified by managerial
control:

• Directed systems
These systems are built and managed to fulfill particular purposes. During long
term operations it is centrally managed to continue to fulfill this purposes and any
new objectives, which are defined by the system owners. Their normal operation
mode is subordinated to the central managed purpose, but the component systems
are able to operate independently. For instance, an air defense network is usually
centrally managed to defend a region against an enemy systems, although their
components may work independently.

• Collaborative systems
The central management organization have no coercive power to run this system.
Component systems must cooperate voluntarily to fulfill the agreed central purpose.
For example, the internet is a collaborative system. The Internet Engineering
Task Force elaborates standards, but has no power to enforce them. Arrangements
between the central players decide how to provide or deny services, thereby they
have the necessary means to enforce and maintain standards.

• Virtual systems
These systems have no central management authority and, moreover, have no
centrally agreed purpose. The supersystem must rely on relatively invisible mecha-
nisms to maintain a common behavior. A virtual system arises either deliberate or
accidentally. The World Wide Web is a well-known example of a virtual system,
since it is distributed physically and managerially. No agency has ever centralized
control, only by publishing standards for resource naming, navigation and document
structure it is possible to exercise partial control. Websites decide on their own
responsibility for compliance with the standards. Standards do not develop in
a controlled manner, they arise from the market success of various innovators.
Various forces in the World Wide Web ensure the compliance and cooperation of
the core standards, they control the system in a certain way.

21

2. Background & Related Work

2.3.2 Traditional vs System of Systems Engineering

Keating et al. [37] compared in their article traditional systems engineering with System
of Systems Engineering (SoSE). Traditional systems engineering has concentrated on
individual complex system problems, the aim is to create one complex system for solving
a specific problem or need. By contrast, SoSE centers the integration of multiple complex
systems, this may involve existing systems, newly designed systems, or a hybrid mixture.
The novel is the formation of the SoS as it consists of a set of integrated complex systems
that originate from an emerging need or mission [37].

Further differences which were noticed by Keating et al. [37] are [38]:

• Traditional systems engineering focuses on optimization, whereas SoSE must be
concerned to strive a satisfactory performance.

• Traditional systems engineering focuses on a final end product. Systems of systems
evolve over time and the concept of a final solution may not be achievable. Therefore,
SoSE focuses more on providing a first deployment.

• For traditional systems the requirements remain the same during development, but
for SoS the requirements evolve over time.

• Traditional systems have clearly defined boundaries, whereas system systems have
none.

2.3.3 Design of SoS

Ingram et al. [39] summarized several architectural principles and modeling patterns in
his work for SoS and their constituent systems (CS). The five identified architectural
patterns suitable for SoS design are [39]:

1. Centralised Architecture Pattern. A centralized architecture has a central
point of control and the central CS (the hub) is connected to other CSs and
responsible for guaranteed SoS behavior.

2. Service Oriented Architecture. SOA applications contain only stateless ser-
vices, applications are constructed by selecting services from their service description
to work together.

3. Publish-Subscribe Architecture Pattern. The data exchange is based on
events. The Publisher distributes events via an event channel, registered Subscribers
receive the published events from the event channel.

4. Pipes and Filters Architecture Pattern. Filters represent the processing steps
and Pipes the connection between Filters for transferring the data. An Input Source
represents the first step where data enters the SoS and the Output Sink defines
where data exits.

22

2.3. System of Systems

5. Blackboard Architecture Pattern. The Blackboard pattern has its origin in
the artificial intelligence community. Three main components work together to
solve the overall problem, (1) Knowledge Sources solve a part of the overall problem,
(2) the Blackboard data structure represents the central data store and (3) the
Control component evaluates the current state of the blackboard.

Nakagawa et al. [34] did a systematic literature review about software architecture for
software-intensive SoS including works from 2004 to 2012. In their paper it was ascer-
tained that Service-Oriented Architecture (SOA) is an often favored architecture style for
SoS. For example, the paper Simanta et al. [40] drew a parallel between SoS and SOA.
Furthermore, lessons learned from SOA implementation are abstracted and applied to
SoS, independent of the implementation technology.

Based on the SOA philosophy, the Arrowhead Framework was developed by Varga
et al. [41]. The framework consists of systems that provide and consume services and
collaborate as systems of systems. Systems that are frequently used are considered as
core, such as service registration, orchestration or authorization. The Service Registry
System is used to ensure that all systems can locate each other, even if the endpoints
change dynamically. The Authorization system maintains a list of access rules to system
resources, so that services can only be accessed by an authorized consumer. The Orches-
tration system is used to determine how systems should be deployed and how they can
be interconnected [41].

Services are used to exchange information between a providing and consuming sys-
tem (compare figure 2.6). Each service has its own set of stakeholders who are interested
in the service and responsible for managing the service (definition, development, deploy-
ment and maintenance). A system can simultaneously be the service provider and service
consumer of one or more services [41].

Figure 2.6: Services produced and consumed by Systems (based on [41])

In figure 2.7 the systems A1, A2 and A3 are combined together to the System of Systems
A. This SoS A can be bundled together with other Arrowhead-compliant systems, such as
B1, C1 and D1. The core system Orchestration, Authorization and Service Registry help
to create the most appropriate and secure connection between the actors. The Dashboard
Man-Machine Interface (MMI) allows interaction with this system of system and the
Arrowhead Verification Tool provides possibilities to test Arrowhead compliance [41].

23

2. Background & Related Work

Figure 2.7: How the Arrowhead core components support the System of Systems [41]

Summary

Similar to a CIS farm, the system of systems approach also consists of several subsystems.
These subsystems can band together to fulfill a mission that no system could accom-
plish alone. In contrast to the components of a CIS farm, these subsystems can exist
alone. Nevertheless, the underlying idea is similar and we could take some architectural
properties.

2.4 Multi-Tenant Systems

In this section, we discuss another related architecture approach for the CIS farm
architecture approach. First, we define the multi-tenant approach and describe the
stakeholders. Then we discuss the design and data storage strategies of multi-tenant
systems. Finally, we describe some architecture approaches to model a multi-tenant
architecture.

2.4.1 Definition

In recent years, Software as a Service (SaaS) has been an aspiring software deployment
paradigm in the cloud. With this novel paradigm, companies no longer need to acquire
and maintain their own ICT infrastructure. Instead, they acquire the services from
a third party. The companies subscribe to the service and underlying infrastructure
from a third party and require only Internet access to use these services [42]. The SaaS
providers are responsible for delivering, securing and managing the application, data and
underlying infrastructure [43].

24

2.4. Multi-Tenant Systems

SaaS is frequently offered in a multi-tenant style [9], in which a single instance of
the software run on the service provider’s infrastructure and several tenants access the
same instance [44].

Bezemer and Zaidman [42] defined ”multi-tenant application” in their work as:

”A multi-tenant application lets customers (tenants) share the same hardware
resources, by offering them one shared application and database instance,
while allowing them to configure the application to fit their needs as if it runs
on a dedicated environment.”

In the same article Bezemer and Zaidman [42] defined the term ”tenant” as

”[...] the organizational entity which rents a multi-tenant SaaS solution.
Typically, a tenant groups a number of users, which are the stakeholders in
the organization.”

In a multi-tenant environment, tenants share resources such as hardware and software
between all users, without necessarily sharing data [9]. Nevertheless the tenants are able
to configure the application to fit their individual needs. The two mainly benefits of this
architecture style are the easy maintenance of the application for the service provider
and the utilization of resources increases [45].

2.4.2 Stakeholders

A tenant offers the tailored application to his own group of potential users, either for
in-house usage or to sell the application to customers. The individual users are unaware
of the fact that other users, even from other tenants, may use the same resources and
applications in parallel [46].

Different types of stakeholders can be identified in the context of multi-tenant applications
[46], which is illustrated in figure 2.8:

• Resource providers offer the server infrastructure, including computing platforms
as platform services (e.g. operating systems, databases and component containers)

• Application providers develop and deploy the SaaS application on top of the
infrastructure

• Tenants rent an application

• Users belong to a certain tenant and access the application without the need of
any installation on their own machines

25

2. Background & Related Work

Figure 2.8: Stakeholders and their activities in a multi-tenant SaaS application [46]

Every stakeholder of a multi-tenant application has different objectives. First, users want
to maximize the application qualities, e.g., select the fastest available algorithm for a
computation. Different tenants want to customize the available services to their individual
needs. An example of this would be to enable or disable additional services or tailor the
application design to their own cooperate design. The objectives from a resource provider
are to minimize the operational costs of the infrastructure. This would be possible, e.g.,
with using less energy or minimizing third-party license fees that are paid per used CPU.
Finally, application providers are interested in maximizing the amount of tenants and
their users, while minimizing the utilized resources in order to maximize their profit.
This can be accomplished for example by sharing as much components as possible [46, 47].

In conclusion, it should be noted that some of these objectives represent a contra-
diction and have to be clarified between the individual stakeholders. For example, a
contradiction is providing optimal performance, whereby reducing operation costs [46].

2.4.3 Design of Multi-Tenant Systems

There exists a difference between the concepts multi-tenant and multi-user. In a multi-
user application all users use the same application with a limited possibility to configure
the application. In a multi-tenant application it should be possible that each tenant has a
variety of configuration options for the application. Tenants use the same building blocks
in their configuration, but the design or workflow of the application could be different for
two tenants [42].

26

2.4. Multi-Tenant Systems

Lin et al. [48] noticed, that the Service Level Agreement (SLA) of each tenant can differ,
each SLA ”define a specific set of performance objective parameters”. This is not the
case for users in a multi-user application [42].

As illustrated in figure 2.9, there are two different kinds of multi-tenancy patterns. First,
the multi-instance pattern, where each tenant gets his own instance of the application
and possibly also the database. The native multi-tenant approach supports all tenants
by a single shared application instance over various hosting resources [42, 49].

Figure 2.9: Two kinds of multi-tenancy patterns (based on [49])

The two patterns scale differently relating to the number of tenants that they are support.
The multi-instance pattern is adopted to support several up to dozens of tenants. On
the other hand, the native multi-tenancy pattern should support a much larger number
of tenants, from hundreds to thousands of tenants [49]. In an article Guo et al. [49]
noted that the”isolation level among tenants decreases as the scalability level increases”.
When native multi-tenancy is used to support more tenants, more efforts should be made
to keep the Quality of Service (QoS) at the same level for each tenant. Nevertheless,
the selection of multi-tenancy technology depends on the requirements and workflow
scenarios of the different target clients. For instance, a large company may prefer to
pay more for multiple instances to avoid the potential risks associated with resource
sharing. While most small and medium business companies would prefer services with
an adequate quality at lower costs and worry less about certain types of multi-tenancy
patterns, that service providers use [49].

Bezemer and Zaidman [42] claimed in their work, that the multi-instance pattern is the
”easier” way of creating a multi-tenant like application from the development perspective.
However, it is only better suited as long as the number of tenants remains low. With the
number of tenants the maintenance costs increase, because the updates must deploy on
all instances of the application [42].

27

2. Background & Related Work

2.4.4 Data Storage Strategies

Multi-tenant database designs are a widely discussed issue, i.a. by Chong et al. [50],
Karatas et al. [51] and Wang et al. [52]. At the data tier there are varying degrees of
data isolation for a multi-tenant application, ranging from a fully shared environment to
a totally isolated environment. The three different approaches are illustrated in figure
2.10 and will be described in the following..

Figure 2.10: Different data storage strategies [51]

Separate Application, Separate Database - Totally isolated

Each tenant has its own separate software and database, they are totally isolated from
each other [51, 52]. It is simple to extend the application’s data model to fulfill individual
needs for tenants, when each of them has its own database. In the case of a failure,
restoring tenants data from backups is a relatively simple process. The disadvantage
of this approach is that the cost for maintaining and backing up tenant data increases.
Hardware costs are higher in this approach as with others, because the number of tenants
that can be served on a particular database server is limited by the number of databases
the server supports. Separating tenant data into individual databases is the ”premium”
approach, because of the comparatively high hardware and maintenance costs. This
approach is suitable for customers, who are willing to pay more for additional security
and customizability. For instance, customers in areas like banking or medical records
management often have very strong and rigorous data isolation requirements [50].

Shared Application, Separate Database - Partially shared

The software is used by all tenants, but each user has its own physically separate database.
Special methods are used, so that the software can be individually adapted to each tenant
referred to his wishes [51]. The advantages and disadvantages are in most cases similar
to the Separate Application, Separate Database approach.

28

2.4. Multi-Tenant Systems

Shared Application, Shared Database - Totally shared

All tenants use a common software, the approach for the database implementation is
divided into two models [51], illustrated in figure 2.11.

Figure 2.11: Totally shared database strategies [51]

Shared Database, Separate Schema. This approach uses a common database, but
each tenant has a separate schema [51]. The separate-schema approach is relatively easy
to implement, such as the isolated approach. Tenants can easily extend the data model,
the tables are created only from a standard default set. However, once created, they no
longer need to correlate to the default set, and tenants can add or change columns or
even tables. A disadvantage of this approach is the recovery of data in case of failure.
If each tenant has its own database, only one specific database needs to be restored
with the data from the last backup. For a separate schema application, restoring means
overwriting the data of each tenant in the same database with backup data, regardless
of whether each tenant had a loss or not. The separate schema approach is suitable for
applications that do not use more than 100 tables per tenant. With this approach, more
clients per server can be accommodated, so the application can be offered more efficient
in regard of the costs. However, customers must accept that their data are co-located
with those of other clients [50].

Shared Database, Shared Schema. Multiple tenants share the same database, tables
and schema [52]. The data of the tenants are only differentiated by adding a tenantId
column [53]. This approach has the lowest hardware and backup costs, because the
largest number of tenants per database server can be served. Since multiple tenants
share the same database tables, this approach may cause additional development effort in
the field of security to guarantee that tenants can never access other tenants data. The

29

2. Background & Related Work

effort for restoring data for a tenant is similar to the shared-schema approach with the
additional complication that recovery now takes place on the row level. This approach
should be used when serving a large number of clients with a small number of servers,
and potential customers accept the lower data isolation in exchange for lower costs [50].

2.4.5 Architecture Approaches

Weissman and Bobrowski [54] noticed that Multi-Tenant applications are only practical
when they are reliable, customizable, upgradeable, secure, and fast. To fulfill the
individual expectations of various tenants a multi-tenant application must be dynamic or
polymorphic. For these reasons, Force.com introduces a metadata architecture approach.
Everything that is exposed to developers or users is internally represented as metadata.
A runtime engine is used to generates application components from the metadata. Figure
2.12 illustrates the metadata-driven architecture approach. There is a clear separation
between all components. These distinction makes it possible to independently update
the system kernel and tenant-specific objects, with no risk to affecting others [54].

Figure 2.12: Metadata-driven architecture [54]

Jiang et al. [55] use a model-driven approach to model a SaaS application platform,
which is multi-tenant aware. The model-driven approach moves the focus of software
development from writing code to building models, the generation of artifacts is automated
directly from the model. Figure 2.13 illustrate the architecture based on the model driven
approach. The core modules of this approach are [55]:

• Execution Platform (EP) is mainly used for the service execution management,
including the common application services and private services based on the user id.

30

2.4. Multi-Tenant Systems

According to the actions of the end users via the Internet, the appropriate services
are loaded and executed.

• Core Model-driven Engines (CME) is the core business and controlling layer
to manage the models.

Figure 2.13: Architecture of a SaaS platform based on the model-driven approach[55]

Summary

In a multi-tenant environment, resources are shared without gaining insight into data of
others. However, this is a contradiction to the aspired approach of a CIS farm. In a CIS
farm, users should benefit from available shared information from other users. Never-
theless, we could take some ideas regarding the data storage strategy and architecture
design.

31

2. Background & Related Work

2.5 Software Evolution
In this section, we take a closer look at software evolution since this thesis addresses
mainly the concept of CIS architecture evolution.

2.5.1 Definition

A pioneer in the field of software evolution was Meir M. Lehman. In 1969 he did an
empirical study within IBM with the aim of improving the company programming effec-
tiveness. This study attracted little attention at IBM and had no impact on development
practices. However, a new and prolific field of research emerged: software evolution [56].

Herraiz et al. [56] described software evolution as

” [...] the process by which programs are modified and adapted to their
changing environment.”

The largest part of life cycle costs flows into the evolution of software to respond to
changing requirements. New business opportunities occur over time, therefore there is
a need to adjust the software. Because the world is constantly changing, evolvability
has become a substantial quality requirement for the majority of software architectures.
Commonly, the inability to evolve software systems effectively and reliably means losing
business opportunities [5].

Lehman et al. [57] identified two different perspectives on software evolution: ”what”
and ”how”. The ”what” perspective explores the nature of software evolution and
investigates the properties of this phenomenon. The ”how” perspective focuses on es-
sential theories, abstractions, and tools to effectively and reliably evolve a software system.

In research and practice the terms software evolution and software maintenance are often
used synonymously. Nevertheless, according to Tripathy and Naik [58] there are some
semantic differences between these two:

• Software maintenance
This concept should prevent the software from failing to deliver the intended
functionality (through bug fixing). This includes all support activities performed
after the delivery of the software.

• Software evolution
This concept means a continuous improvement from a smaller and simpler state to
a bigger and better state. This includes all activities that are performed to effect
changes in the requirements.

Based on empirical studies, Lehman and his collaborators introduced the laws of software
evolution first in 1974. The laws continued to evolved over time, from three in 1994

32

2.5. Software Evolution

to eight in 1997 (since they are unchanged). The laws are the outcome of studies to
the evolution of large-scale proprietary or closed-source software (CSS) systems. These
laws affect the E-type systems, a specific category of software systems [56, 58]. E-type
programs are part of human or social activities. These programs became part of the
modeled world (embedded in it), they try to solve problems of the involved humans [59].
The eight laws can be briefly summarized as follows [58, 60]:

1. Continuing Change. Systems in use must be constantly adapted, otherwise they
will become increasingly less useful.

2. Increasing Complexity. Systems are becoming increasingly complex due to maintenance-
related changes if no additional work is attempt to explicitly minimize the complexity
of a system

3. Self-Regulation. The evolutionary process is self-regulating, the products and
processes that generated during evolution are nearly normally distributed.

4. Conservation of Organizational Stability. The average work rate on an evolving
system tends to be nearly constant over the lifetime of the system.

5. Conservation of familiarity. The incremental growth of systems is limited by the
need to maintain a constant level of familiarity and understanding. For example,
developers, salespeople and users need to understand the content and behavior of
the system at all times. Too large incremental growth in one release-version reduces
the understanding of the system.

6. Continuing growth. The functionality of systems must be continuously improved
and increased to meet the needs of users and maintain their satisfaction.

7. Declining quality. If a system is not rigorously adapted and evolved to address
changes in the operational environment, the quality will decrease.

8. Feedback system. Evolution processes involve multi-level, multi-loop, multi-agent
feedback systems, which must also be treated as such to be continuously, successfully
modified or enhanced.

2.5.2 Stage Model

Rajlich and Bennett [61] described a new way to view the software life cycle, in which
they split the software lifespan in five distinct stages, each with different activities, tools,
and business consequences. The five stages are illustrated in figure 2.14 and described
below [61, 62]:

• Initial development. In this stage the first version of the software is developed from
scratch. The engineers make the selection about the programming language, system
architecture, used libraries and much more. These elementary choices set the course
for the whole lifespan of the software. Later in the project the modification of these
decisions is very expensive and in most cases not to be done.

33

2. Background & Related Work

• Evolution. The engineers create new features, correct former mistakes and miscon-
ception, and replay to changes in the requirements, technologies and knowledge.
Software changes are the fundamental constituents of software evolution and every
change introduces a new feature or property into the software.

• Servicing. At this stage, engineers make only minor repairs and elementary changes,
since major changes are both difficult and expensive. The software should still be
usable, but with minimal effort. Software in the servicing staged called ”legacy
software”, ”aging software”, or ”software in maintenance”.

• Phaseout. The phase-out stage is entered, when the company decides that the
software is not worth to do any further repairs. Nevertheless, the company tries to
generate revenue from the system as long as possible - by continuing to work with
it.

• Closedown. When the company completely retires the system from the market, it
is called close-down. The company redirects users to a replacement system, if one
exists.

Figure 2.14: The simple staged model (based on [61])

An extension of the stage model is the versioned stage model, as shown in figure 2.15. The
software team periodically creates a new version of the software, the older versions are no
longer evolved, only maintained. All major changes in functionality will be implemented
in future releases. If a version is outdated and users need new functionality, they will
need to replace their version with a new one. Software companies that sell so-called
”shrink-wrap software” to large user communities often follow the versioned staged model
[63].

34

2.5. Software Evolution

Figure 2.15: The versioned staged model (based on [61])

Software architecture can change from one stage to another. The software team specify
the architecture during the initial development, which represents a significant commitment
- since it determines the ease of future evolution. The architecture often loses its original
clarity and integrity, because of the required changes in the system. This requires
sometimes restructuring, where designers partial rebuild the architecture to facilitate
future evolution. During servicing, architecture sometimes becomes an obstacle that
limits the scope of possible changes. Wrapping is often applied, additional damaging the
architecture by making it cryptic and difficult to understand. When code changes are
performed, they should be well planned to minimize impact on other components. The
deterioration lastly reaches a point where the architecture is impossible to maintain, the
phase-out is the only option [61].

35

2. Background & Related Work

2.5.3 Evolution Approaches

In the following some evolution approaches and concepts from the literature are described:

• A component-based assembly of a software system leads to well-structured and
modular architectures with independent and reusable components. The various
components communicate with each other through their interfaces, perhaps using
adapters. The component-based software system must be adjusted always to varying
requirements or changes in the environment [64]. Côté et al. [64] formulates a
method that supports a systematic evolution of component-based software at the
architectural level. The method uses schemata and heuristics to guide software
engineers through evolution tasks [64].

• Sadou et al. [65] presented in there work a model to enhance software evolution,
called Software Architecture Evolution Model (SAEV). Software architecture is
defined by its architectural elements, such as components, connectors and con-
figurations. To these architectural elements three different abstraction levels are
associate, (1) the meta-level, (2) the architectural level, and (3) the application
level. SAEV offers a whole range of concepts to describe and manage the evolution
of architectures in all abstraction levels consistently. Examples for such concepts
are evolution operations, evolution rules, evolution strategies and invariants Sadou
et al. [65].

• The concept of online evolution addresses the issue of updating running programs
without interrupting their execution. Many software systems, in particular mission
critical software systems, must provide services continuously and without interrup-
tion. However, these software systems must evolve continually to fix bugs, add
features, improve algorithms or adapt to new running environments [66]. Therefore,
Wang et al. [66] suggest a component-based approach for online software evolution,
which focus on the online update of component implementations and online update
of component interfaces.

• Barnes et al. [67] outlined in there paper ” foundations for reasoning about and sup-
porting architectural evolution”. The focus of this approach lies on evolution paths,
aiming to select an optimal path to achieve the business goals of an organization
[67].

• Aoyama [68] proposes a set of metrics for software architecture evolution and
discusses continuous and discontinuous software evolution on the foundation of
the proposed metrics. Continuous software evolution preserves most of the aspect,
whereas discontinuous software evolution changes some essential aspects, such
as software architecture and major features [69]. Aoyama [68] claimed ”that
discontinuity arises to reengineer software architecture and is an essential aspect
of software evolution”. The evolutionary dynamics with discontinuity exposes the
inhomogeneous nature of software development over space and time.

36

2.6. Summary

2.6 Summary
First, a brief overview of software architecture and aspects regarding its importance were
given. Through a good architecture key requirements can be fulfilled and the quality of
the final product can be increased. Therefore it is necessary to find a suitable architecture
to integrate several CIS instances in one environment. For the definition of an appropriate
architectural approach we searched for similarities in the literature. Some similarities
were identified in SoS and multi-tenant systems.

SoS arise when complex systems are joined together to fulfill a mission that no system
could accomplish alone. Each system continues to pursue its own goals. However, in the
intended network of CIS instances, any instance should be embedded into an enclosing
system. The CIS instances need specific features that are provided by the enclosing
system to work properly, e.g., at a global level it is checked whether a user has access
to the CIS instance or not. Users benefit in a cross-linked environment from a network
of CIS instances that link knowledge from different domains. All CIS instances have
the same functionality and are only filled with different knowledge on a particular topic.
However, this approach is not sufficient, because in a CIS network superordinate functions
are needed.

In a multi-tenant environment resources are shared without gaining insight into data of
others. However, this is a contradiction to the aspired approach of linked CIS instances,
because users should benefit from available shared information of other users. Within a
cross-linked environment of CIS instances users have access to several CIS instances to
exchange their knowledge. Nevertheless, some ideas regarding the data storage strategy
can be taken from multi-tenant systems. Summarizing, the benefits of a cross-linked
environment of CIS instances are the collaboration of the users and the profit of sharing
knowledge between them. These are the main achievements a multi-tenant system cannot
fulfill.

The aggregation and dissemination phases are essential parts of a CIS, as their knowledge
is collected and distributed. Until now, these two phases are only considered in a single,
independent CIS. However, in a cross-linked environment of identical CIS instances only
filled with different knowledge, makes it necessary to consider several CIS instances
during the aggregation and dissemination phase.

Finally, the software evolution was considered, since most of the costs incurred in this
part of the software lifecycle. Software evolution is an important issue and has not yet
been processed in relation with CIS. Nevertheless, existing evolution approaches provide
an orientation, e.g., the use of a component-based approach to increase the re-usability.

In conclusion, no suitable approach is currently available which addresses all challenges
to embed several CIS instances into an enclosing system. Therefore it is necessary to
develop a new architecture design approach.

37

CHAPTER 3
Research Questions and Approach

This chapter describes the research goals, the research questions and approach of this
thesis. Firstly, the research challenges are specified, that occur when evolving a CIS into
a more complex system. Afterwards, the research questions will be discussed and the
research methods to answer them are identified.

3.1 Research Challenges

There are multiple challenges when evolving a CIS into a more complex system, where
several CIS instances are integrated into an enclosing system. The existence of several
similar CIS instances, only filled with different knowledge, leads to limitations, such as
(1) a large number of instances to maintain, (2) many accounts for one researcher or (3)
the cross-instance linking of knowledge across various instances is impossible. Therefore,
a novel architecture approach needs to be developed in which multiple CIS instances
can be integrated into one system environment. This creates the opportunity to remove
the limitations as already mentioned. The figure 3.1 illustrates the challenges that are
addressed in the context of this thesis to create a new architecture approach. The new
architecture approach is illustrated in the middle of the figure and the challenges are
shown on the outside. Each number in the illustration maps to the corresponding number
of the list below:

1. Missing definition
At the moment, there is no definition of an architecture approach to enclose
several CIS instances into one environment. Therefore no architectural principles
are available to design such an architecture. There are similar approaches that
partly address the same problems as a farm architecture and suggest architectural
principles. However, these approaches are not in the context of a CIS and do not
reflect the idea of this thesis.

39

3. Research Questions and Approach

2. Missing characteristics
There is a lack of knowledge about the system components and architecture princi-
ples of the enclosing system. Depending on the area of application or presentation
of the knowledge, it may be possible to integrate different system components.

3. Missing architecture approach
There are several platforms on the Internet that indicate the characteristics of the
aspired architectural approach. But after a short survey, compared to each other,
these platforms differ considerably and no uniform characteristics or feature set
can be derived.

4. Missing process for CIS evolution
There is no process available how a CIS can be evolved into a more complex system,
where several CIS instances are integrated into one environment.

Figure 3.1: Overview of the research challenges

40

3.2. Research Questions

3.2 Research Questions
Based on these challenges, the goal of this thesis is to support software architecture evo-
lution of collective intelligence systems (CIS) towards a so-called CIS Farm Architecture,
which is a particular variant of a system of systems architecture. Figure 3.2 combines
each research questions with the corresponding research activities and expected results.
In detail, we aim to answer the following research questions to support the goal of this
thesis:

RQ 1: What are the underlying architectural principles of a CIS farm plat-
form?

To address RQ 1, we examine similar architecture approaches in literature, such as the
system of systems architectures or multi-tenant systems. Additionally, systems in the
field will be reviewed to identify and categorize common features and capabilities as well
as variants. The consolidation of the results represents the basis for an architectural
description of a CIS farm-based platform. Answering RQ 1 is important to software
architects and researchers alike, since it contributes to improving the understanding of
complex SoS architectures and variants in particular in the CIS application domain.

RQ 2: What are the steps to evolve a CIS into a farm platform?

This research question focuses on the challenge on how to support software architects in
the evolution of CIS platforms. Therefore, we design an evolution process that should
support software architects in the systematic evolution of a CIS into a CIS farm. The
evolution process should consist of several steps, which are necessary to transform a CIS
into a CIS farm-based platform.

RQ 3: To what extent are the identified architectural principles and the farm
evolution approach sufficient to describe key characteristics of a CIS farm?

A CIS farm should enable the easy exchange of knowledge across different domains for
users. The target architectural approach offers a variety of features that a single CIS
instance cannot provide, e.g., one single account for several instances, link knowledge
across various instances or the simple creation of a new CIS instance. The architectural
principles, the CIS farm meta-model and the evolution approach should support software
architects in the evolution of a CIS into a CIS farm. Therefore, we need to investigate
the validity of the provided contributions of this thesis.

41

3. Research Questions and Approach

3.3 Research Methodology

In the following we describe the methodological approach to answer the research questions.
We also illustrate the activities of the methodological approach in figure 3.2.

1. Literature Review
In this step, information about existing literature on architectural principles of
system of systems is collected and reviewed how it relates to the targeted CIS
farm architecture approach. Another interest is to investigate the multi-tenant
architectures and how they can be combined with collective intelligence systems,
in particular with respect to CI-specific capabilities. Findings should provide a
first insight into the farm architecture design and its characteristics as well as its
application in the CIS domain.

2. Survey of existing CIS Farm Platforms
In addition to a literature survey, CIS are also investigated in the field which
realize such a farm architecture to identify and categorize common features and
capabilities. Findings should support the identification and definition of quality
indicators for CIS farms.

3. Specification of a Glossary CIS
A brief analysis of glossaries will clarify their definition, benefits and requirements.
Besides, current solutions to create a glossary are analyzed concerning their advan-
tages and disadvantages. Furthermore, the needs for a Glossary CIS supporting a
farm architecture should be collected.

4. Consolidation of Architectural Principles of the CIS Farm Architecture
The results generated in the previous steps will provide the foundation for a design
of a CIS-based SoS farm architecture. We identify the architecture principles, the
characteristics and the meta-model of a CIS farm architecture approach. Through
the consolidated results, we can to answer RQ 1.

5. Definition of a CIS Farm Evolution Approach
This step comprises the development and definition of a CIS farm evolution approach,
the CIS-EVO-Farm approach, that answers RQ 2. The CIS-EVO-Farm approach is a
light-weight, decision-tree-based process that supports the architecture evolution of
a CIS platform into a CIS farm. As far as applicable, existing evolution approaches
should be considered as foundation to derive this approach.

6. Architectural Design of the CIS-Farm Prototype: The Glossary Plat-
form
In this step the proposed architecture design approach and the CIS-EVO-Farm
evolution approach from the previous steps are applied to evolve an existing CIS
into a CIS farm. In this scenario, the existing code base and development process

42

3.3. Research Methodology

information (tickets, bug reports, code reviews) of the Glossary Platform1 are used.
Additionally, long-time data from a specific Glossary CIS instance is available
that was used by multi-disciplinary engineering teams from the Christian Doppler
Laboratory of Software Engineering for Flexible Automation Systems, a research
project of the TU Wien. Expected results of this step include an architecture
description and architecture model of the to-be farm system. This step supports
answering RQ 3.

7. Development of the Glossary Platform prototype
This step focuses on the iterative development of the evolved Glossary Platform
prototype following an agile software development process. For the implemen-
tation, state-of-the-art web application frameworks (Ruby on Rails) and cloud
infrastructures (Heroku) will be used.

8. User Test & Survey of Prototype Users
To answer RQ 3 we evaluate the Glossary Farm, where we applied our architecture
principles, meta-model and evolution process. The prototype will be evaluated by
conducting a user study to identify completeness, usability and usefulness of the
Glossary Farm. During the evaluation we aim to answer the following questions:
(1) Do the architecture model sufficiently describe the CIS farm specific elements
and processes? (2) Can the CIS-EVO-Farm architecture approach satisfactorily be
used to evolve a CIS to a CIS farm? (3) What success and risks factors as well as
lessons learned could be identified? With the user study it should determined how
well users can handle the designed concept.

9. Refinement of the CIS farm architecture design & process based on
results
If the results of the evaluation are not satisfactory, the CIS farm architecture
design and evolution process must be revised and improved. However, if the
results are satisfactory this step is skipped. A satisfactory result could be that
the meta-model and the CIS-EVO-Farm approach can be used successfully during
the implementation and the users gain a positive impression of the Glossary Farm
during the user study.

1https://glossary-cdl-sqi.herokuapp.com, last visited at 10.06.2018

43

https://glossary-cdl-sqi.herokuapp.com

3. Research Questions and Approach

Figure 3.2: Overview of research activities in this thesis

44

CHAPTER 4
Survey of CIS Farm Platforms

This chapter gives an overview about existing farm approaches and comparable platforms
of a farm. First, different platforms are selected for the survey, then the analysis procedure
is described. Next, a brief overview of each platform is given, then they are compared in
tabular form based on the selected criteria. Finally, the survey questions are answered.

4.1 Survey Design

The survey is intended to provide a first insight into the functionality of CIS farms.
For this purpose, existing platforms with a farm or farm-like approach are selected and
compared. Finally, common elements of the platforms are identified and described.

4.1.1 System Selection

This section describes the selection of platforms, which is divided into two parts. Firstly
platforms with a farm approach are selected, then platforms with a farm-like approach.

Systems with a Farm approach

As a first step, platforms with a farm approach that differ in application and context are
examined. Farm approaches for collective intelligence systems can be particularly found
in wikis and Q&A sites. There are several wiki farms on the market, so a Google Trends1

analysis was performed for the selection. Google Trends is a public website, that analyzes
data based on Google search. For example, it can be shown how often a certain search
term is entered in comparison to other search terms in different regions and languages. In
their study, Jun et al. [70] showed that Google Trends is used to analyze various variables
in areas such as IT, communications, health and economics. Google Trends makes it

1https://trends.google.com, last visited at 23.08.2018

45

https://trends.google.com

4. Survey of CIS Farm Platforms

possible to identify the current interests of searchers, allowing an immediate reflection
on the needs, wishes and requirements of the users [70]. It should be noted that Google
Trends is not a forecast of the future, nevertheless it can help to describe the current
interests of the present [71].

Based on the Google Trends analysis (cf. figure 4.1) the two most searched providers
of wiki farms for the comparison were chosen. The selected providers are Atlassian and
Wikia, the former is very well-known in the business sector, the second especially in
public communities.

Figure 4.1: Google Trends - Wiki-Farms, web search between April 2017 and April 2018

In a first brief analysis about Q&A sites only Stack Exchange exhibited a farm approach,
while the others were only subdivided into categories. Stack Exchange Inc. is a popular
provider that hosts the well-known Q&A website StackOverflow for programmers.

Systems with a Farm-like approach

As a second step, farm-like platforms are compared to gather ideas for an architecture de-
sign. A farm-like approach is mainly used in multi-tenant computer-supported cooperative
work systems. Computer-Supported Cooperative Work (CSCW) is a multidisciplinary
field, in which computers are used as a key technology to support human interaction [72].
Palmer and Fields [73] defined CSCW systems as a system

”[...] that integrates information processing and communications activities to
help individuals work together as a group.”

Multi-tenant CSCW systems share some common aspects with a farm platform. For
example, multiple users use the same instance of the platform (often without their notice)
to work together.

46

4.1. Survey Design

Borghoff and Schlichter [74] described in their book several CSCW application areas in
detail. Incipiently with the historically first systems, such as group editors, coordination
systems, message systems and conferencing systems. Networks have a major impact on
how users work together to solve common tasks. Especially electronic message systems
(email) and distributed file systems opened a new efficient way of cooperation, initially
mainly asynchronously. Therefore, well-known representatives of CSCW systems in the
field of e-mail and cloud storage are selected to get additional ideas for the design of a
farm architecture.

CSCW is also a key component in customer relationship management (CRM) [72].
Since the end of 2017 CRM software has been the largest of all software markets world-
wide, according to Gartner, Inc and the prognosis is, that this trend will continue [75].
Gartner, Inc. annually publishes the Magic Quadrant, which examines the global market
for customer service and support applications. From the 2017 survey it can be inferred
that Salesforce.com2 is currently the leading vendor [76] and is therefore also considered
in the analysis (cf. figure 4.4).

Figure 4.2: Google Trends - Cloud Storage, web search between April 2017 and April
2018

2https://salesforce.com, last visited at 25.08.2018

47

https://salesforce.com

4. Survey of CIS Farm Platforms

Figure 4.3: Google Trends - E-Mail servies, web search between April 2017 and April
2018

Figure 4.4: Magic Quadrant for the CRM Customer Engagement Center [76]

48

4.1. Survey Design

4.1.2 Survey Process and Data Collection

The analysis of each platform is based on a hands-on user experience. For each platform
the same activities in an equal order are performed. However, few activity steps in the
analysis differ on whether it was a platform with a farm approach or a multi-tenant
CSCW system. The goal was to gain insight into how the systems work and to collect
ideas for their architecture design.

A variety of data was collected about the systems during the survey, e.g. (1) how
does the user management and notification system work, (2) how are the user activities
recorded, (3) how can contributions be created and (4) how can a new farm entity be
created. The collected data differs from system to system as they all have different fields
of application. Some platforms share their knowledge in form of articles, others by asking
and answering questions. Therefore, the knowledge is structured differently depending
on the type of the platform. Among other things, the analysis focuses on how knowledge
is available in various systems and made accessible to users.

The first steps of the data collection particularly cover the question how the aggregation
of information is performed. The last steps are more focused on how the dissemination of
information is performed. According to Musil et al. [2] the aggregation and dissemination
phase are major topics in a CIS realization. Actors change the content of CI artifacts and
the infrastructure triggers other actors through dissemination rules about the modified
content. Since these phases are a main part of a CIS, particular attention is paid to
reproduce them in a CIS-Farm.

Within a farm the term farm entity refers to an independent area in the system, e.g.,
inside a wiki farm the term describes a single wiki or in the Q&A farm Stack Exchange
the site Stack Overflow. In a multi-tenant system, the term farm entity equates with
tenant workspace.

For each platform with a farm approach the following activity steps were performed in
the same order:

1. Create user account

2. View private profile

3. Edit private profile

4. View public profile of others

5. Create new farm entity

6. Show farm entity

7. Add item to farm entity

49

4. Survey of CIS Farm Platforms

8. Edit item of farm entity

9. Link items over farm entities

10. Edit notification settings

11. Edit permissions of a farm entity

12. Edit own notifications

When analyzing multi-tenant CSCW systems, the following steps have been omitted 5, 9,
10 and 11. In steps 6, 7 and 8 the term farm entity refers to the tenant space.

4.1.3 Data Analysis

Each system is analyzed in a short but intensive self-study and then compared with the
other systems. Through the comparison of individual platforms similarities and differences
should be detected. This makes it possible to identify the system characteristics and user
needs of a CIS-Farm.

During the analysis of different systems the following questions are examined and be
answered:

• How is a typical farm platform structured?

• What are core components of a farm platform?

• Which similarities exist between multi-tenant CSCW-Systems and a farm?

• How are the individual farm entities separated and how can a user switch between
them?

• How does the linking between different farm entities work?

• What are the characteristics of a farm?

• Which user needs can be identified regarding to a farm platform?

• How different is the community of each individual farm entity?

4.2 Survey Results

Firstly, three existing CIS-Farm approaches are presented and afterwards compared.
These analyzed platforms are all based on the concept of a farm architecture, but
implement that differently. Secondly, three multi-tenant CSCW systems will be presented
and also compared with each other.

50

4.2. Survey Results

4.2.1 CIS-Farm Approaches

Confluence

Confluence3 is a team collaboration software developed by Atlassian. Confluence is a
commercial product, which is available as either software as a service or as on-premises
software. Essentially Confluence is used as enterprise wiki for the communication and
the knowledge exchange in enterprises and organizations. Spaces are used to organize
content into meaningful categories. Each user can create their own space, the access to
spaces can be blocked or approved for users or user groups. Through various add-ons,
Confluence can be tailored to the individual needs of each team.

Fandom

Fandom powered by Wikia4 is a free wiki hosting service, based on the open-source wiki
software MediaWiki. The main purpose of Fandom is to provide information in a much
larger and more comprehensive way than it is possible on Wikipedia5. Wikipedia has
only one page per topic. In contrast, Fandom has its own wiki-instance per topic, which
can be divided into various sub-pages. Each community on Fandom is specialized in a
particular topic or subject. The most common interests of users on this platform are
books, movies, series and games. On the contrary to other hosting services Fandom
pursues the goal of founding new communities. Every hosting proposal is accepted, new
wikis are automatically created within seconds. Purely private wikis are not allowed.
Fandom hosts over hundred thousand wikis and is financed by advertising.

Stack Exchange

Stack Exchange is a network of question-and-answer (Q&A) websites, every single site
is addressing a certain topic. The main purpose of each site is to allow users to ask
questions and answer them. User are encouraged by a reputation award process to answer
questions or to vote on answers and questions. Through several actions users collect
reputation points, which unlock further privileges on the site. The reputation award
process allows the sites to be self-moderated. Ideas for a new site must pass the Area516

process, this ensures that a sufficiently large community exists that can answer questions.
One of the most popular sites of Stack Exchange is Stack Overflow7 and after this initial
site all other sites in the network are modeled.

3https://confluence.atlassian.com, last visited at 25.08.2018
4http://fandom.wikia.com, last visited at 25.08.2018
5https://www.wikipedia.org/
6http://area51.stackexchange.com/, last visited at 25.08.2018
7https://stackoverflow.com/, last visited at 25.08.2018

51

https://confluence.atlassian.com
http://fandom.wikia.com
https://www.wikipedia.org/
http://area51.stackexchange.com/
https://stackoverflow.com/

4. Survey of CIS Farm Platforms

Table 4.1 shows the detailed comparison of the platforms with a farm approach.

Confluence Fandom Stack Exchange

kind of platform Wiki Wiki Q&A

costs depending on the ver-
sion, from 10$/month

free free

permission to create new
farm entity

everyone everyone Area51 process

language various owner choose global lan-
guage

actually only English,
but a Russia and a Chi-
nese Q&A exist

single user account for
all subsection

yes yes yes

global user profile yes partially yes

farm entity user profile no yes global view, but harmo-
nized to the current en-
tity

category exchange knowledge
about company topics

wiki in particular area:
- Video games
- Movies
- Comics
- TV
- Music lifestyle

Q&A in a particular
area:
- Technology
- Life/Arts
- Culture/Recreation
- Science

exchange of knowledge user posts knowledge
about a topic (internal
company topics)

user posts knowledge
about a topic

user asks experts for
something

permissions admin users can assign
global rights, space-
creator for his space

owner of the wiki can as-
sign rights

reputation score, at the
highest levels access to
special moderation tools

list of all farm entities depending on the permis-
sions

no yes

private farm entity yes no no

navigation to other farm
entities

via button not possible via button

linking between farm en-
tities

possible possible no use

notifications e-mail and platform noti-
fications

e-mail and platform noti-
fications

e-mail and platform noti-
fications

dissemination daily Updates
recommended updates

weekly digest best community content
(weekly)
question subscriptions

mobile app yes extra app for each wiki
(not for every wiki)

yes

employees user (company), but no
special employees from
Atlassian to write arti-
cles

employees write articles
for the main-site

no employees to answer
questions

licenses Proprietary Creative Commons User contributions are
licensed under Creative
Commons Attribution-
ShareAlike 3.0 Unported

commercial use yes no no

Table 4.1: Comparison of CIS farm platforms

52

4.2. Survey Results

4.2.2 Multi-Tenant CSCW Systems

Gmail

Gmail8 is a free, ad-supported email service developed by Google. The mail servers
automatically scan emails for various purposes, such as to filter spam and malware.
Gmail offers a more flexible way as other providers to organize mails, instead of folders
there are Labels (tags) in Gmail. The mails are attached by freely defined mail filters
or manually after the received to this Labels. Users can paste files from Google Drive
into their message to send large files. Gmail offers a search-oriented interface and a
conversation view, that is similar to an Internet forum. Gmail is one of the largest mail
providers worldwide.

Google Drive

Google Drive9 is a free file storage developed by Google. The service allows users to store
files in the cloud, synchronize files across various devices, share files and collaboratively
create and edit documents. Google Drive includes its own office suite to allow users
to work collaboratively on documents. All files created through the office application
are automatically saved in Google Drive. Google Drive has a sophisticated file-sharing
system, the owner can control the public visibility of the file or folder. Files or folders
can be privately shared with specific Google users. Sharing files with non Google account
owners requires a secret URL for the file, via that the access to the file is possible.

Salesforce

Salesforce.com10 is an international provider of enterprise cloud computing solutions. The
company regards itself as a provider of Software as a Service and Platform as a Service,
specializing in customer relationship management (CRM) for businesses of all sizes. The
CRM service is broken down into several categories, like Service Cloud, Data Cloud
and App Cloud. The products from Salesforce.com are designed to connect employees,
customers and products. Through these products, organizations can manage customer
accounts, track sales lines, conduct and monitor marketing campaigns, and provide
after-sale service.

8https://mail.google.com, last visited at 25.08.2018
9https://drive.google.com, last visited at 25.08.2018

10https://www.salesforce.com, last visited at 25.08.2018

53

https://mail.google.com
https://drive.google.com
https://www.salesforce.com

4. Survey of CIS Farm Platforms

Table 4.2 shows the detailed comparison of the multi-tenant CSCW systems.

Gmail Google Drive Salesforce

kind of application exchange messages store and synchronize
files

CRM service: mange
customer accounts, man-
age leads, track sales
lines etc.

tenant workspace per user per user per company

exchange of knowledge only by sending e-mails,
information can be ex-
changed

files and folders can be
shared with others

only inside the company

number of users in a ten-
ant workspace

workspace has only one
user

workspace has only one
user

workspace has multiple
users (employees)

visibility of a tenant
workspace

private, only for the
owner

private, expected the
shared files and folders

only per company

global user profile none none only inside the company

permission only the owner has ac-
cess to his section

read or write permis-
sions can be assigned to
shared files and folders

different roles, depend-
ing on the position in
the company the user
has more rights (Sys-
tem Administrator, Con-
tact Manager, Market-
ing User etc.)

structure of susection use of labels files are organized in
folders

subdivision into apps,
which have different
views

list of all subsections no no no

mobile app yes yes yes

commercial use no no yes

Table 4.2: Comparison of Multi-Tenant CSCW systems

4.3 Summary

The results of this survey are a foundation of chapter 6, where we identify the charac-
teristics of a CIS farm architecture design. They provide an insight what are essential
elements of a CIS farm architecture and are later integrated into the CIS farm meta-model.

Afterward, the analysis questions are answered based on the survey results to iden-
tify common elements:

• How is a typical farm platform structured?
A farm is typically divided into areas where knowledge about a topic or domain is
collected and distributed among their community. Each area is clearly demarcated
and can be distinguished from the others.

• What are core components of a farm platform?
Identified core components are (1) the user management, (4) the notification system,
(3) the farm entity management, and (4) the artifact management in each farm
platform.

54

4.3. Summary

• Which similarities exist between multi-tenant CSCW systems and a
farm?
All tenants of the investigated multi-tenant CSCW systems share the same platform
instance without knowing it. One difference of this system approach, however, is that
in some systems multiple users can access one tenant workspace (e.h. Salesforce).
The main focus also lies on a common knowledge exchange, only realized in another
way, e.g., sending messages or sharing files through separate workspaces.

• How are the individual farm entities separated and how can a user
switch between them?
A farm entity is a separate area in the enclosing system, which is often presented
as an independent platform by hiding the other farm entities in a menu. Switching
to another farm entity is usually possible through a menu or button.

• How does the linking between different farm entities work?
All examined systems offer the possibility to create internal links to other farm
entities. However, the creation of links is different from system to system. For
example, Fandom introduces its own syntax and Confluence uses a selection dialog
to create connections between farm entities.

• What are the characteristics of a farm?
A farm offers an infrastructure for a variety of communities to manage, share and
expand knowledge. At the same time communities can network and link related
knowledge across several farm entities. Within a farm environment, each user has
only one account and can be part of multiple communities.

• Which user needs can be identified regarding to a farm platform?
The identified user needs are (1) single user accounts, (2) the possibility to share
information between different farm entities, (3) a simple creation procedure of a
new farm entity, (4) regular notifications about recent activities in the system and
(5) integrated data analysis across farm entities.

• How different is the community of each individual farm entity?
The community of individual farm entities can differ significantly, e.g., Stack
Exchange has a community for Anime & Manga and Software Engineering.

55

CHAPTER 5
Application Scenario: The

Glossary Platform

This chapter covers the fundamental understanding of a glossary. It is essential to know
the basics of a glossary as this is used in the thesis as an application scenario. First, the
term glossary is introduced and afterward differentiated to other similar concepts. Then
the key elements and the benefits of using a glossary are presented. Furthermore, the
advantages and disadvantages of available glossary solutions are discussed. Based on
the available glossary solutions requirements for a modern glossary system are derived.
Finally, the Glossary Platform of the TU Wien as a collective intelligence system is
presented.

5.1 Definition of a Glossary
The commonality of a dictionary, encyclopedia and glossary is that they provide explana-
tions to various terms. Nevertheless, there are significant differences between these three
concepts. A dictionary is defined in the Oxford Dictionary1 as

”a book or electronic resource that lists the words of a language (typically in
alphabetical order) and gives their meaning, or gives the equivalent words in
a different language, often also providing information about pronunciation,
origin, and usage.”

1https://en.oxforddictionaries.com, last visited at 04.08.2018

57

https://en.oxforddictionaries.com

5. Application Scenario: The Glossary Platform

A encyclopedia is defined in the Oxford Dictionary1 as

”a book or set of books giving information on many subjects or on many
aspects of one subject and typically arranged alphabetically.”

A glossary is defined in the Oxford Dictionary1 as

”an alphabetical list of words relating to a specific subject, text, or dialect,
with explanations”.

A glossary is a specialized list of words with associated definitions and can usually be
found at the end of a non-fiction book. More and more, companies create standard
glossaries to share words and definitions in their minds. Glossaries are commonly used for
clarification and contain no information about the word like a dictionary (e.g., pronunci-
ation). A glossary can contain both standard words and fiction words. The former can
also be found in a dictionary and the second group are usually created by an organization
[77]. In contrast to an encyclopedia, a glossary contains only terms with a brief definition
and no comprehensive background information on a topic.

Figure 5.1 shows a typical use case of a glossary. A user checks the meaning of the word
”interpreter” in the glossary to get a better understanding of the term. The terms and its
associated definition were previously created by an expert.

Figure 5.1: Main use case of a glossary

58

5.2. Available Glossary Solutions

5.1.1 Key Elements of a Glossary

In general, a glossary is a list of terms with associated definitions and not dissimilar to a
dictionary. Compared to a dictionary, a glossary contains only terms, which are unique
to a business domain [78]. Key elements of a glossary include:

• Terms. These are unique words or short phrases that are part of the business
language. Typical terms are nouns, people, places or things.

• Definitions. A definition indicates the clear meaning of a term in an unequiv-
ocal manner and clarifies the limits how the term can be adequately used in a
communication.

• Alias/Synonyms. A word, phrase, or acronym that can be used exchangeable
with the primary term in the glossary.

• Related Terms. Refer to other terms in the glossary that are similar to, but
not interchangeable with, the primary term.

5.1.2 Benefits of Using a Glossary

Through the use of a glossary in a company or organization, all stakeholders have the
same level of knowledge about used terms. This results in several benefits [78]:

• Effective Communication. A more effective communication between stake-
holders is possible, as terminological disagreements can be abolished by a unified
definition.

• Common Language. Time savings at meetings, since the participants use a
common language.

• Facilitated Learning. Learning about a new business domain is easier, if domain-
specific terms are clearly described.

• Clear Definitions. Misunderstandings can be avoided if important terms in
documents have a clear definition.

5.2 Available Glossary Solutions

There are numerous possibilities how a glossary can be created, several are presented
hereafter:

1. Editor-based document. An editor-based document allows the fast and simple
creation of a glossary. The terms and its associated definitions can create straight-
forward line-by-line, through proper formatting the terms can be displayed clearly.
Suitable applications are Microsoft Word or OpenOffice Writer.

59

5. Application Scenario: The Glossary Platform

2. Table-based document. An easy way to create a glossary is to use a table for
the terms and its definitions. The first column contains the term name and the
second the definition. Suitable applications are Microsoft Excel or OpenOffice Calc.

3. Online document. The creation procedure of a glossary in online documents
is similar to editor-based documents or table-based documents. The primary
advantage of this solution is that the synchronization issue is eliminated since this
problem is outsourced to the vendor. A suitable applications are Google Docs or
Google Sheets.

4. LaTeX Package. LaTeX is a document preparation system, in which the general
structure of a document is defined via markup tagging conventions. The often
academical used application provide a external package to create an elementary
glossary.

5. WordPress Plugin. WordPress allows the creation and management of web
pages through the browser and is nowadays also referred as a content management
system (CMS). The plugin CM Tooltip Glossary allows the creation of an advanced
glossary.

6. Confluence Plugin. Confluence is mainly used as an enterprise wiki for the
communication and the knowledge exchange in organizations. There are plugins
for the server and cloud solution available that allow the creation of a glossary.

7. MediaWiki. MediaWiki is free wiki software and the foundation of numerous wiki
pages. A glossary can be created through an integrated function.

8. Smartcat. Smartcat is a translation web app that enables collaborative translation,
which also allows the creation of a glossary. Certain functions of the application
can only be activated by payment, such as the use of multiple account users.

There are even more applications with which a glossary can be realized, this is just a
cross-section of the most well-known available solutions. In table 5.1, a few advantages
and disadvantages of these solutions are listed:

Solution Advantages Disadvantages

Editor-based
document - Easy and fast to create

- Only textual references to syn-
onyms and related terms

- No change history
- Synchronization problems be-
tween multiple users

60

5.2. Available Glossary Solutions

Table-based
document - Easy and fast to create

- Only textual references to syn-
onyms and related terms

- No change history
- Synchronization problems be-
tween multiple users

Online
Document

- Easy and fast to create
- Multi-user operation
- Minimalistic change history
available

- Only textual references to syn-
onyms and related terms

- Complex and confusing with
many terms

LaTeX
- References to glossary entries in
the document are possible

- Sorting order adjustable

- Time consuming to create, due
to the syntax

- No change history
- Text-form difficult to read (not
formated)

WordPress
Plugin

- Create Synonyms
- Tooltips for the web page
- CSV export
- Multi-user operation

- WordPress application is neces-
sary

- No related terms
- No history, only last editor is
displayed

Confluence
Plugin

- Create Synonyms, only textual
(no link)

- Tooltips for the web page
- Term search
- Multi-user operation

- Confluence application is neces-
sary

- No related terms
- No history, only last editor is
displayed

MediaWiki

- Change history available, but
confusing and complex

- Internal links to other sections
possible

- Clear alphabetical arrangement

- MediaWiki application is neces-
sary

- Time consuming to create, due
to the syntax

- No synonyms and related terms

61

5. Application Scenario: The Glossary Platform

Smartcat

- User-defined fields can be cre-
ated

- Term search
- Multi-user operation
- Export

- No history, only last editor is
displayed

- View is confusing with many
terms

- Some features are not free

Table 5.1: Advantages and disadvantages of available glossary solutions

The main purpose of the presented applications is not the creation of glossaries, so
certain functions are difficult to locate or are not available. Creating terms can be
cumbersome and tedious, such as learning a particular syntax. Another disadvantage
is that a glossary cannot exist independently of these applications (e.g., embedded in
LaTeX or Confluence). If a change in the application is being considered, because the
main tasks can better be realized with another application, the formerly created glossary
can sometimes not be transferred (no export or import functions available). Therefore,
knowledge can sometimes be lost through the use of embedded glossaries.

Another disadvantage is that some functions are absent, such as a user-friendly and
straightforward creation process for terms. Other missing features are the impossibility
to view the complete term history, to create a term discussion or to vote on a definition.
Furthermore, synonyms could often only be created in textual form without hyperlinks
to other terms. Another problem with the first two solutions is that there are synchro-
nization issues when multiple users are editing a glossary at the same time. It may
happen, that changes get lost when two users save the document and overwrite each
other. Finally, it can be said, that all presented solutions do not meet the requirements
of a modern computer-based glossary system.

5.3 Requirements for a Modern Glossary System

Derived from the described problems above a wide variety of requirements of a modern
glossary system could be identified. The identified requirements can be divided into
essential and optional features. The basic functions of a working glossary system are
illustrated in figure 5.2 and described below:

R1: Create Term. The core element of a glossary are terms, which must be
created in before additional knowledge can be added.

R2: Show Term. A term must be displayed with all its stored information, such
as the name of the term, creator, time of creation, etc.

62

5.3. Requirements for a Modern Glossary System

R3: Terms Overview. There must be a clear representation of all terms in the
system, e.g., terms sorted alphabetically.

R4: Add Definition to a Term. Each term must have at least one definition,
that describes the term more precisely and specify its clear meaning in a defined
context.

R5: Show Definitions of a Term. Associated definitions of a term should be
displayed together with the term.

R6: Edit Term. Editing a term is a necessary feature since typos can be corrected
or additional information can be added. Besides, terms can be created quickly in a
discussion and completed at a later point.

R7: Delete Term. There must be a deletion function for wrong or unnecessary
terms in the system.

R8: Edit Definition of a Term. A definition must be editable to complete or
modify knowledge or to correct typos.

R9: Remove Definition of a Term. Definitions should be deletable to remove
incorrect or duplicated definitions from a term.

R10: Add Synonyms to a Term. If a term has an interchangeable term in the
system, it should be possible to hyperlink these.

R11: Add Related Terms to a Term. If a term has a related, but not identical
term in the application, it should be possible to connect these.

Figure 5.2: Requirements of a modern glossary

63

5. Application Scenario: The Glossary Platform

If these basic requirements are present in an application, a elementary glossary can
be implemented. Additional features in the application increase the usability and the
possibility to add and share knowledge more efficiently. Additional features of a modern
glossary are illustrated in figure 5.3 and described below:

F1: Term History. Changes to a term and its associated definitions should be
tracked. Thereby, certain changes can be undone, since information get never lost.
In addition, various statistics can be generated from the activities around a term.

F2: Term Search. Numerous advantages arise when it is possible to search for a
term in the application, e.g., saving time to find a term or discover related terms.

F3: Term Discussion. Users should be able to exchange knowledge on a certain
term, such as incomprehensible or incomplete definitions, suggestions for additions
or hints to further resources.

F4: Term Quality Level. The quality level allows the reader to quickly recognize
whether a term is correct or incomplete.

F5: Definitions Quality Level. If, in addition, there is also a quality level for
definitions, it is easier to identify which things still need to be revised or which
definitions should be used with caution.

F6: Add External Reference to a Definition. Additional information should
be added to definitions by linking to external sources, e.g., source with more detailed
knowledge.

F7: Vote on a Definition. If a term has more than one definition, it may
be useful to vote on the individual definitions to assert which is the best/worst
definition of the term.

Figure 5.3: Additional features of a modern glossary

64

5.4. Glossary Platform as Collective Intelligence System

5.4 Glossary Platform as Collective Intelligence System

The Glossary Platform as a collective intelligence system is a prototypical development
of the TU Wien and is already in use for research projects of the Institute of Information
Systems Engineering, e.g., the CDL-SQI Glossary2. The existing platform allows scientists
to collaborate geographically independently by using a shared online glossary with a
collection of terms and definitions.

5.4.1 Stakeholders and their Benefits

Figure 5.4 illustrates all active stakeholders of the Glossary Platform. The Glossary
Founder initiates the creation of a new glossary. In addition, she has to provide the
necessary infrastructure to host the glossary. Maintenance of the glossary instance is the
task of the Administrator, e.g., updates or user administration. The Moderator monitors
all changes in terms and definitions and deletes incorrect or inappropriate contributions.
Glossary Users adds mainly new knowledge. Besides, they change or improve existing
terms and definitions. Public Users only view the contributions of the community.

Figure 5.4: Stakeholder of the Glossary Platform

2https://glossary-cdl-sqi.herokuapp.com, last visited at 15.06.2019

65

https://glossary-cdl-sqi.herokuapp.com

5. Application Scenario: The Glossary Platform

The Glossary Platform allows researchers from multiple domains to collaborate geo-
graphically independently and to collect and share terms and their various definitions
for a particular project or field of study. So all project participants have a common
understanding of terms and concepts and reduce terminological misunderstandings and
inconsistencies. New project members can also familiarize themselves more quickly, as
there are uniform definitions of terms. Furthermore, the Glossary Platform aims to
minimize the administration effort, which arises, e.g., from handwritten notes or Word
documents, including editing, sharing, access, track keeping, monitoring, distributing,
and commenting.

5.4.2 Main Use Cases

The primary use cases of the Glossary Platform can be seen in figure 5.6. Besides, the
Glossary Platform implements all requirements and additional features of a modern
glossary system (compare chapter 5.3).

Every glossary provides public and free access to its content, so that anyone with interest
gets access. However, only registered users can contribute new information to a glossary
and thereby share their knowledge with the community. Through a role model the
access is restricted to certain areas, so there are some private areas that only users with
specific roles can access (e.g., overview of all users and administration of them). The
following roles are implemented in the glossary administrator, moderator and standard-
user. Moderators differ only in one point from standard-users, they are allowed to delete
also other contributions, not just their own.

The central concept in the Glossary is that different terms can be created and each term
can possess multiple definitions. All logged in users can perform changes to existing
term pages and add additional definitions. Since multiple users collaboratively edit a
term and its definitions, all revisions of the term are logged with a list of the editors,
the time-stamps and the changes that they have made. Furthermore, each term has an
associated comment section, where the users are allowed to discuss about the content of
the term.

Terms undergo different quality levels during their lifetime (cf. figure 5.5). New terms
get the status ”not validated”. As soon as a user thinks the term is ready and complete,
she sets the status to ”needs validation”. Subsequently, the term gets either the status
”needs rework”, because the content is not yet matured or the status ”validated” because
everything is completed. If a term is outdated, he can get the status ”deprecated”.
Definitions go through the same quality levels and can differ from the term status.

Figure 5.5: Different quality levels of terms

66

5.4. Glossary Platform as Collective Intelligence System

Another essential feature in the system are tags, each term and definition can be tagged
with a various quantity of keywords. All terms and definitions which have been tagged
with a specific keyword can be displayed on a separate overlay page. Tags are especially
used to categorize content and topics, which makes it easier to discover related artifacts.

A core feature of the Glossary is the linking between artifacts, this is possible through
synonyms and related terms. Synonyms are terms that mean exactly or nearly the same as
another, and related terms are associated with others. Linked artifacts are a substantial
part for the recommender system.

Figure 5.6: Major use cases of the Glossary Platform

All activities performed by a registered user within the Glossary are recorded and stored
together with a reference to the account. Thereby at any time, it can be determined,
for example, when a term was edited or when a user has viewed another user profile.
The recorded data are summarized and published in elementary statistics inside the

67

5. Application Scenario: The Glossary Platform

glossary. Through this data, an insight into the system is possible, such as how active the
community of the glossary is and how much content they generate. The main purpose of
the notification system is to encourage users to further contributions. The Glossary uses
email as the primary communication channel with the individual users. There are three
different types of notifications: (1) global digest, (2) personal digest and (3) ranking
summary. The global digest informs once a week about recent changes in the glossary
and shows interesting stuff, such as trending terms and definitions (detected by the
number of views), or artifacts, which needs validation. Weekly, the personal digest shows
recent changes to own contributions and suggests similar terms and definitions for further
inspection (based on calls, tags, synonyms and related terms). The ranking summary is
sent monthly and provides information about the number of changes per user, the one
with the most contributions gets the first place.

5.4.3 System Design & Implementation

Musil et al. [31] developed the Glossary Platform as a pilot CIS to cross-check the CIS-
AF. A detailed description of the CIS-AF can be found in chapter 2.2.4. The Glossary
Platform is a web application that is accessible via a web browser. The platform is
implemented in Ruby on Rails and deployed on Heroku3. For each glossary instance, a
new Heroku app must be created.

A simplified data model of the Glossary Platform is illustrated in figure 5.7. Following, a
brief description of the tables and their connections:

• The most important tables are terms and definitions, since they contain the main
knowledge of a glossary.

• The tables synonyms and relationships contain the connections between terms.

• All researchers who collaborates to the glossary are stored in the table users.

• The table activities contains all user activities in the system, e.g., if a user creates
a new term, deletes a definition, adds a synonym to a term or tags a term.

• Table activities has only one direct relationship to users, all other connections are
derived via the columns trackable_id and trackable_type.

• The table tags contains all tags of the glossary.

• Since several entities can be tagged, the table taggings has no direct connections to
these. The connections are derived via the columns taggable_id and taggable_type.

3https://heroku.com, last visted on 1.12.2018

68

https://heroku.com

5.4. Glossary Platform as Collective Intelligence System

Figure 5.7: Simplified data model of the Glossary Platform

5.4.4 Challenges & Needs

Currently, a new system instance for every glossary project has to be created. This
results in a significant effort for the system management and configuration by the system
administrators, e.g., updates and bug fixes have to be executed separately for each system.
Furthermore, a user who is involved in more than one project has to create and manage
several accounts. As a result, account changes, content search across multiple projects
and creating contributions in various projects becomes time-consuming and impractical.

A crucial skill that the Glossary Platform currently lacks, is a system-embracing in-
tegration. Content, its metadata and user activity data cannot be shared collectively
for all glossaries. Subsequently, relevant information can be lost. For example, a new
tag is added to a term in Glossary A. In Glossary B this tag is already in use. Users
from Glossary B receive no notification that this tag has been linked again, although
the content would be interesting for them. Users receive only demarcated stand-alone
notifications per glossary.

In order to reduce the additional efforts and limitations, it is conceived to transform the

69

5. Application Scenario: The Glossary Platform

Glossary Platform into a more complex system, a so-called Glossary Farm. The farm
approach is a particular variant of a system of systems architecture. Several glossary
instances are integrated into one environment and share certain functions. With this
approach, it is possible to link terms across several glossaries, create notifications based
on activities from various glossaries and generate statistics and analysis over multiple
glossaries.

There are many advantages of the operation of a glossary farm. Users are able to
effortlessly host multiple instances of a glossary and create new communities around spe-
cific topics. The newly designed architecture also reduces the generation and maintenance
expenditure for an instance. The community benefits from a single user account in various
instances and the possibility of cross-reference similar information. The system-over-
system software architecture allows collecting more data across the instances, thereby
the opportunity for analysis increases.

70

CHAPTER 6
Characteristics of a CIS Farm

Architecture Design

The focus of this chapter lies on the characteristics of a CIS farm architecture design.
Based on preliminary investigations the system characteristics of a CIS farm are identified.
Furthermore, the benefits and user needs of CIS farm are described.

6.1 System Characteristics
Based on the analysis of similar architecture concepts, the CIS farm survey of practical
systems and the Glossary CIS analysis, we gain ideas for the characteristics of a CIS
farm. In the following, the main characteristics of a CIS farm described. If a system
fulfills all mentioned aspects, it represents a CIS farm. In addition to the textual listing,
the properties are illustrated in figure 6.1.

1. CIS farm administrator
A CIS farm must have an administrator, who initially sets up the system. In
addition, she has to handle all major maintenance work and updates, and monitors
the system.

2. Global unique user account
Everybody should obtain only one account to interact with the farm and the
individual farm entities. After logging in, the user can be identified in all farm
entities and can perform various actions.

3. Global individual user profile
Each user should obtain only one user profile in the system, to which personal data
are associated. This shared, public personal data can be viewed by other users.

71

6. Characteristics of a CIS Farm Architecture Design

4. System-wide permissions
Users should possess individual rights on the global level, for example the roles
administrator and standard-user can be implemented. An Administrators can
create new farm entities, invite new users or delete existing ones. Standard-users
do not have these rights.

5. Process to create new farm entity
There should be a process that allows all users to create a new farm entity. This
process can be dependent on the system-wide permissions, e.g., administrators can
create a new farm entity immediately, but for standard-users, the inquiry must
first be approved by an administrator. The user who initiated the creation process
becomes automatically administrator of this new farm entity.

6. Classification of farm entities in categories
Farm entities should be subdivided into categories in order to associate them with a
certain context. Due to the subdivision, the area of application is easier to identify
and facilitates, e.g., the identification of relevant farm entities.

7. Visibility of the farm entities
Farm entities can have either public or private visibility. Through public farm
entities all users can navigate and view the artifacts. Private farm entities can only
be viewed by associated logged-in users, and all others have no insight into this
farm entities.

8. User assignment to farm entities
Only by assigning users to farm entities they get write permissions, otherwise users
have only reading rights. Through the writing permission it is possible for users to
create new artifacts or to modify or accordingly supplement existing ones.

9. Individual permission for every farm entity
It should be possible for users to have different rights in different farm entities. For
example, a user can be administrator in one farm entity and a standard-user in all
other farm entities.

10. Artifacts belong to a farm entity
An artifact represents a knowledge unit and always belongs to precisely one farm
entity.

11. Create links between different farm entities
Similar artifacts from different farm entities can be connected within a CIS farm.
This makes it possible to build an artifact network across the CIS farm.

12. Artifact search
Artifacts should be searchable across all farm entities. This makes it possible to
identify similar artifacts and if applicable link them.

72

6.1. System Characteristics

13. Notification system
The CIS farm has a global notification system to encourage users to make further
contributions.

14. Individual notification per farm entity
Notifications should be structured according to the farm entities, so that a lightweight
distinction is possible. In addition, only messages for farm entities should be sent if
an underlying action has taken place and the user is assigned to these farm entity.

15. Notification setting for each farm entity
Notifications should be customizable for each farm entity. This makes it possible
for users to receive all, only certain or no messages for a farm entity.

Figure 6.1: System Characteristics

73

6. Characteristics of a CIS Farm Architecture Design

6.2 Benefits of a CIS Farm Architecture
Besides the identification of the CIS farm characteristics, the investigation has also
highlighted a couple of benefits and user needs. Only when all these requirements are
implemented in the system, users will actively use the system and be satisfied with the
application.

1. Lower administration costs
The process of creating a new instance is greatly simplified, new instances need not
longer be deployed and hosted separately. A farm system creates a new farm entity
within the existing infrastructure. The effort to delete or temporarily deactivate an
instance has been significantly reduced. In addition, there is no longer the need to
manage a different URL for each instance, because the farm entities are all located
within one environment.

2. Single user account
Users only have a single account to interact with different instances of the platform.
This allows the user to track her activities in different communities and get relevant
suggestions of different instances in one notification. The effort to switch between
different instances is minimized within a farm.

3. Overview of all available farm entities
All instances of the farm platform can be viewed through a single action, which
helps the users to find new interesting instances faster.

4. Opportunity to share information between different farm entities
Inside a farm platform, artifacts from different instances can be linked expeditiously
and effortlessly. Thereby it is possible to exchange information between different
communities.

5. Visibility of farm entities
Administrators of a farm entity have the option to mark farm entities as private,
so access is only granted to explicitly invited users. This may be useful for projects
that only authorized users are allowed to view.

6. Discreet notification system
Users should be informed in regular intervals about activities in the system, to
motivate them for further contributions. However, these notifications must not be
too intrusive and, if necessary, users should be able to disable them individually for
each instance.

7. Statistics
Through a statistical evaluation, users have the opportunity to compare activities
across different instances and may identify communities that need assistance.
Beyond that, it is possible to observe the activities of the user over time and
instances.

74

CHAPTER 7
Farm Architecture Design for CIS

At the beginning of this chapter the structure of a farm architecture will be visualized.
Afterwards, a delimitation to other related architecture styles will be made. Then, the
stigmergic process of a CIS farm will be described. Finally, the meta-model for a CIS
farm architecture will be presented.

7.1 Terminology & Structure

Figure 7.1 shows the coarse structure of a CIS farm and commonly used terms. A CIS
farm system consists of several farm entities, these entities were previously separate and
independent systems.

Figure 7.1: Farm Structure

75

7. Farm Architecture Design for CIS

In the context of a CIS farm, a CIS instance is called farm entity. Every farm entity
stores its knowledge in CI artifacts. Each CIS farm has several Users, which can be
member of one or more farm entities. If a user is a member of a farm entity, she is able
to perform various activities on CI artifacts, such as modify an artifact or create a new
one. With a CI artifact link it is possible to link two different artifacts together.

7.2 Delimitation to other Architecture Styles

The CIS farm architecture approach differs in several ways from already well-known
architecture styles, such as the multi-tenant style or the SoS approach. These differences
arise from the fact that different goals are pursued. Knowledge within a farm should be
accessible to a variety of users, which should be encouraged to add new information.

7.2.1 Multi-tenancy Systems

Within a multi-tenant environment, tenants share resources, but have their own delimited
area and can customize the application individually to their needs. The differences
between a multi-tenant system and a CIS farm are:

1. Tenants have only a single private area. Each tenant gets a separate area,
where its data are isolated and invisible to other tenants.

2. Each tenant has its own users. In several multi-tenant applications, tenants
have a number of users, who have access to the data and can modify them. These
users have no access to data from other tenants, therefore they can not be member
of multiple tenants. Each user unambiguously belongs to a tenant.

3. No linking of artifacts is possible over several tenants. It is not possible
to link data across different tenant spaces.

4. Explicit release of data of a tenant. In many multi-tenant applications, there
is a mechanism to make certain data accessible to others, e.g., sharing a file in
Google Drive. Within a public farm entity all artifacts are accessible to others.

5. Limited dissemination. Multi-tenant applications tend to focus on the collection
of knowledge, there is no process that encourages users to further contributions.
Mostly, users are not notified of changes from others.

Some types of CIS farms, such as Stack Exchange, Fandom or the Glossary Farm provide
public access to all or certain farm entities, where unregistered users have read permissions.
This has the advantage that more people can benefit from the knowledge in a farm entity
and have the possibility to look up relevant topics. The following additional distinguishing
features to a multi-tenant environment apply only to certain CIS farm types with public
accessible farm entities:

• Unregistered users have no access. In order to gain access to the application
in a multi-tenant environment, an account must first be created.

76

7.3. Architecture Overview

• No global overview of all tenants. There exists no public overview, where all
tenants of a provider are listed.

7.2.2 System of Systems

Although the CIS farm approach basically consists of individual systems (also known as
farm entity), several main characteristics of an SoS are violated. Among other things,
the following differences between an SoS and a CIS farm could be determined:

1. Violation of geographical distribution. The farm entities are embedded in a
single environment and can not exist alone.

2. Impairment of operational independence. The individual farm entities are
all integrated into the same environment, they can not provide their functions
independently. If, for example, the farm environment crashes due to an error, the
individual farm entities can no longer be reached.

3. No managerial independence. Farm entities do not have an independent life
cycle, they are bound to the global system.

4. No different functionality of the individual systems. All farm entities
provide exactly the same functions, they only manage different data.

5. Simple provision of new systems. Since the functionalities of all farm entities
are identical, there is no need to integrate new interfaces and therefore the generation
of a new farm entity is a simple process.

6. No evolutionary development. The purpose of the global system never changes,
since the farm entities always have the same functionality. It is not possible to add
farm entities with other functionalities, only new features can be added to existing
entities.

7.3 Architecture Overview
This section shows the stigmergic process and the meta-model of a CIS farm architecture.

7.3.1 Stigmergic Process

The stigmergic process of a CIS farm is equal to that of a CIS. The CIS farm stigmergic
process consists also of two fundamental phases, which are equal to the defined process
by Musil et al. [2]:

1. Aggregation Phase. In this phase, the actors access the content of the CI artifacts
and modify them via the infrastructure.

2. Dissemination Phase. This phase uses active and passive dissemination rules of
the infrastructure to inform actors about content changes and activities of other
actors in the system.

77

7. Farm Architecture Design for CIS

Within a CIS farm there exist also a positive feedback loop. The stigmergic process
of a CIS farm consists only of one additional element that takes care of the execution
of the dissemination rules within the farm entities. Therefore, the CIS farm uses the
same operating procedure as a CIS and applies an information-gathering model that is
well-defined and successful. Figure 7.2 illustrates the stigmergic process in the context of
a CIS farm.

Figure 7.2: Stigmergic CIS farm process with aggregation and dissemination phases

As already mentioned, the stigmergic process implements a permanent feedback loop
between a human actor base and a reactive coordination infrastructure (compare figure
7.2). A CIS farm has numerous actors, who can be members of several farm entities.
The actors of a farm entity modify the content of CI artifacts, their behavior is tracked
in actor records (AR). Each actor has an AR within a farm entity, that is explicitly
associated with the CIS farm AR of the actor. Dissemination rules are defined for the
entire CIS farm to make others aware of changes of CI artifacts. The dissemination
routine in each farm entity only applies the defined dissemination rules of the CIS farm
and thereby the actors are triggered to modify CI artifacts.

78

7.3. Architecture Overview

Example: Dissemination Phase

Dissemination rules are defined at the global level, and the dissemination routine in
each farm entity deals only with the execution of this rules. Figure 7.3 illustrates the
dissemination phase. The green block is executed for every member of a farm entity.
The orange line is executed for all farm entities and the yellow for all members of the
farm entity. The objects of the current execution cycle are always transferred to the
dissemination routine (green block). After the dissemination phase is completed, all users
are informed about relevant content changes and activities and may be encouraged for
new contributions. Rule 1 informs users only about changes in the same farm entity, but
through Rule 2 users are also informed about relevant CI artifacts from other entities.

Dissemination rules:

Rule 1: If a user contributed to a CI artifact and another user modified the content
later again, inform her.

Rule 2: If a user has tagged a CI artifact and another user used this tag later for a
different CI artifact, inform her.

Executed rules of the dissemination routine:

Rule 1: Get all modified artifacts of user A in farm entity X and look if there is a later
modification date.

Rule 2: Get all used tags of user A and look if this tag is used later for a other artifact
in farm entity X from another user.

Figure 7.3: Visualization of the dissemination phase

79

7. Farm Architecture Design for CIS

7.3.2 Meta-Model

With the SIS architecture pattern, software architects are able to efficiently describe core
elements and processes of a CIS architecture without being restricted in the technical
implementation [2]. Figure 7.4 illustrates the meta-model, that underlies the SIS pattern,
with the key elements and their relations. The meta-model has three main components:
(1) an actor base as proactive component, (2) a CI artifact network as a passive component,
and (3) an AMD system as a reactive/adaptive component [2]. For more details about
the SIS pattern see chapter 2.2.3.

Figure 7.4: Meta-model of the SIS pattern [2] describing a CIS architecture

A main contribution of this thesis is the evolution of a CIS architecture to a CIS farm
architecture. Therefore, we extend the meta-model of the SIS pattern, to a CIS farm
meta-model. In the extended model an additional main component is added, the Farm
Entity Network, that represents the network of farm entities within a CIS farm. Figure
7.5 shows the extended meta-model, new elements are highlighted in green.

80

7.3. Architecture Overview

Figure 7.5: Meta-model of a CIS farm architecture

81

7. Farm Architecture Design for CIS

In the following, the new elements and general behavior of the CIS farm architecture are
described in more detail.

• A Human Actor is a user of the CIS farm.

• A CIS farm consists of several Farm Entities, whereby a Farm Entity represents a
single CIS.

• Every Farm Entity has a unique Farm Entity Owner, who creates the Farm Entity
within the CIS farm.

• Each Human Actor can be a member of several Farm Entities.

• Each CI Artifact is explicitly assigned to a Farm Entity.

• Only when a Human Actor is a member in a Farm Entity she can create and edit
CI Artifacts.

• Within a CIS farm it is possible to link several Farm Entities through Farm Entity
Links.

• CI Artifacts can be linked across Artifact Links between several Farm Entities.

• The Farm Entity Actor Record tracks the behavior of each Human Actor, e.g., when
she edits the content of a CI Artifact.

• A Human Actor has only a Farm Entity Actor Record when she is a member of
the corresponding Farm Entity.

• Each member of a farm entity has a Farm Entity Actor Record, which is connected
to the global Actor Record of the Human Actor.

• The Farm Owner defines the dissemination rules for the whole CIS farm, which
are executed by the dissemination routine.

• Based on the global Actor Record of a Human Actor her notifications are generated.

• A Human Actor has an individual Farm Entity Actor Role in each Farm Entity,
e.g, she can be an administrator in Farm Entity A and a standard user in Farm
Entity B.

• Every Human Actor has a Farm Actor Role, which grants him certain permissions
at farm level.

82

7.4. Application of CIS Farm Architecture

7.4 Application of CIS Farm Architecture
Today, for each new CIS with the same structure instance clones are created, where merely
a copy of the CIS is filled with new knowledge and evolves more or less independently of
the original system. This leads to a variety of limitations, such as high administration
effort for the operators and users. Therefore, a CIS farm architecture is useful when
similar CIS instances exist with different kinds of knowledge base content, grouped
and organized around a specific topic. Operators of a CIS farm can reuse the system
capabilities for knowledge with similar structures, e.g., they can effortless create a new
CIS in the farm environment. Through a CIS farm architecture several problems of a
classical CIS architecture can be solved:

• The administrative effort can be significantly reduced with a CIS farm, since only
one system has to be maintained, e.g., updates and bug fixes have to be installed
only once.

• A user has only one account for several CIS instances, so called farm entities. After
logging in, the user can be identified in all farm entities and can perform various
actions.

• Since a user only works with one user account, it is possible to consider several
farm entities in the dissemination phase. This may encourage a user to contribute
to other related farm entities.

• Since all farm entities are embedded in one environment, it is easy to create a new
farm entity. This considerably reduces the administrative burden since not every
instance needs to be deployed and maintained individually.

• It is possible to link knowledge across various farm entities. Similar artifacts from
different farm entities can be connected within a CIS farm. This makes it possible
to build an artifact network across the CIS farm and to find related knowledge
faster.

• Integrated data analysis can perform across various farm entities. Therefore, for
example, communities can be identified which need additional incentives for further
contributions.

In summary, a CIS farm architecture is useful when many instances with a same structure
but filled with different knowledge should be created. The designed architecture concept
integrates many instances, so-called farm entities, into one environment. For example,
Stack Exchange1 uses the concept of a farm architecture. Stack Exchange is a network
of question-and-answer (Q&A) websites, where every single sub-site addresses a certain
topic. Within the Q&A network, each user has only one account and knowledge can be
linked across different Q&A topic sites.

1https://stackexchange.com, last visited at 10.02.2019

83

https://stackexchange.com

CHAPTER 8
CIS Farm Evolution Approach

This chapter outlines a process to evolve a CIS platform to a CIS farm. The documentation
of all steps of the evolution process is part of the architecture description of a CIS farm.
First, the prerequisites are described and afterward the evolution process. Finally, a
migration process for the data are described in short form.

8.1 Prerequisites

In chapter 2.5.3 existing software evolution approaches from the literature are described,
but during the literature review it turned out that no suitable approach for the evolution
of a CIS could be found. Only general statements that facilitate software evolution could
be identified. For example, an object-oriented or component-based design improves the
reusability [64, 79]. The evolution of a CIS to a CIS farm is basically a discontinuous
software evolution, because some essential aspects, such as software architecture and
features are changed [68]. A significant change in software architecture is that an enclosing
environment is created in which the farm entities are embedded. Furthermore, with a CIS
farm architecture, new features are added to the system which brings additional benefits
for the stakeholders, such as integrated data analysis across different farm entities, simple
creation of new farm entities or notifications for several farm entities.

The CIS-EVO-Farm approach describes the evolution process of a CIS architecture
to a CIS farm architecture. This approach can be applied, when a CIS should be evolved
into a CIS farm, in which several farm entities are embedded into one environment.
To be successful, the following criteria must be fulfilled: (1) access to the CIS code
base, (2) access to the CIS data and (3) all farm entities must have the same structure.
The CIS-EVO-Farm approach supports software architects to evolve a CIS into a more
complex platform, with a system of systems approach.

85

8. CIS Farm Evolution Approach

8.2 Evolution Process
The CIS-EVO-Farm approach describes a light-weight, decision-tree-based process that
supports the architectural evolution of a CIS platform into a CIS farm. This approach is
designed to assist developers and software architects with a step-by-step guide to evolve
a CIS platform into a CIS farm (cf. figure 8.1). The newly designed approach includes
the following steps:

1. Identification
The first step is to identify and distinguish the properties of the CIS farm and those
of the individual farm entities. In the course of the evolution, components of the
enclosing environment (CIS farm) and components of a farm entity are separated.
For example, the user management could postpone to farm level, whereas the CI
artifact management belongs to a farm entity.

• Identify CIS Farm Properties
Components that belong to the CIS farm are unique in the entire system
and represent the enclosing system (e.g., user-management or administration
of the farm entities). The design and functionality of the enclosing system
are defined in this step. Later, farm entities are created within the enclosing
system.

• Identify Farm Entity Properties
A farm entity represents an independent CIS in an enclosing environment,
in which knowledge is collected. Features that are part of a farm entity are
duplicated when a new farm entity is created. Each farm entity should have
its own scope in which CI artifacts can be created and edited.

2. Characterize User Groups
During the evolution, the user groups of the CIS farm and the farm entities have
to be characterized. An actor has an individual role in the CIS farm and in each
farm entity in which she is a member. Furthermore, it has to be determined how a
user can become a member of a farm entity (e.g., by invitation).

3. Determine the Permission System
Each defined user group gets certain rights, that allow or forbid to perform specific
actions in the system. For example, only an administrator should be able to delete
farm entities.

4. Evolve the System Architecture
The architecture is adapted to the new requirements of a CIS farm. Some compo-
nents of the legacy system have to be moved to farm-level (like user-management),
others can remain in the farm entities (e.g., creation of new CI artifacts).

5. Design Database Schema
Once all the important features and components of the CIS farm are identified, the

86

8.2. Evolution Process

database schema can be adapted. It must be ensured that a new farm entity can
be quickly and easily incorporated and cross-system components are independent
of farm entities.

6. Implementation
After the conception phase of the CIS farm is completed, the evolution of the
system can start.

• CIS Farm
First, the fundamental structure of the enclosing system must be created.
Above all, the administrative activities of the legacy system are abstracted (like
user-management) and the concept to manage the farm entities is implemented.
The majority of the dissemination phase is scheduled on farm level, the
execution of the rules is done in the farm entities.

• Farm Entity
In this development phase, most functions of the legacy system are reproduced,
and the new cross-functional features of farm entities are implemented. The
aggregation of knowledge occurs in the farm entities since a farm entity usually
provides an overview of a specific topic.

7. Verification of the CIS Farm
To ensure that the developed CIS farm operates properly and satisfactorily, several
tests should be performed. Particular attention should be paid to the interaction
of the aggregation and dissemination phases. If, after verification, the result shows
that the CIS farm is not operating correctly, a new iteration beginning at the
architecture evolution step is necessary. However, if everything works satisfactorily,
the last step can be performed.

8. Migrate Data to the CIS Farm
Finally, all data from various CIS instances have to be migrated to the new designed
CIS farm. A particular challenge is, that some data has been duplicated in several
instances (like user accounts). After migrating the data of an instance, duplicates
must be identified and deleted if found. Besides, the IDs of the referenced data
must be set correctly.

87

8. CIS Farm Evolution Approach

Figure 8.1: Overview of the CIS-EVO-Farm approach

88

8.3. Data Migration Process

8.3 Data Migration Process
Based on our assumption, that several CIS platforms existed in parallel with the same
code base, but filled with different data and knowledge, the following data migration
process can be executed to migrate all data into one environment. The data migration
process contains 6 steps, where step 3 to 6 must be repeated as many times as farm
entities should be created:

1. Identify data to migrate
All data to be transferred must be identified before the actual migration can be
initiated. It is possible, that some data will not be transferred, because they are
not required or incompatible to the new implementation.

2. Merge farm-wide values
Some data exist several times in the CIS instances, but these need to be unified in
the CIS farm, such as user accounts.

3. Create new farm entity
A new farm entity needs to be created in which, among other things, the content
of the CI artifacts can be integrated.

4. Add specific values to the farm entity
Several specific farm entity values need to be set, such as the administrator or the
visibility settings of the farm entity.

5. Assign users to the farm entity
All transferred or merged users have to be added to the farm entity as members, so
they can continue their work in the new environment.

6. Integrate data to the farm entity
Concluding, all remaining values can be transferred to the farm entity, such as the
content of the CI artifacts.

After the evolution and migration process, the CIS farm and data can immediately be
accessed by the users without a new user account or manual transfer of the data. The
community can directly take full advantage of the CIS farm, such as link knowledge
across various farm entities or create effortless a new farm entity. Besides, the individual
CIS instances can be archived as they are no longer needed.

89

8. CIS Farm Evolution Approach

Figure 8.2: Migration process

90

CHAPTER 9
Application of CIS Farm

Architecture Design Approach

This chapter describes the application of the proposed CIS farm architecture design
approach by implementing a prototypical CIS farm system. First, the initial state is
briefly discussed, then stakeholders are described. Afterwards, typical use cases of the
Glossary Farm are presented, before the implementation of the system is explained.
Finally, some challenges during the development are discussed.

9.1 Initial System
As described in section 5.4.4, there exist several challenges and limitations when operat-
ing standalone Glossary Platforms. A new system instance has to be created for every
glossary project, which results in a significant effort for the system management and
configuration, e.g., updates and bug fixes have to be executed separately for each system.
Furthermore, the creation of a new instance is expensive and time-consuming, because a
new instance has to be deployed by an administrator. In addition, a user who is involved
in more than one project has to create and manage several accounts.

Figure 9.1 illustrates the current state of the architecture design of the Glossary Plat-
form. This approach has various limitations, such as many standalone instances, several
accounts for one researcher and no cross-instance linking of knowledge. To address the
mentioned limitations of the Glossary Platform the CIS farm architecture approach is an
applicable solution because all farm entities are integrated into one system environment.

91

9. Application of CIS Farm Architecture Design Approach

Figure 9.1: Architecture design of the Glossary Platform

9.2 Evolution to CIS Farm Architecture

The purpose of the Glossary Platform evolution is to verify the designed CIS farm
architecture and the evolution approach in practice. Besides, the users of the Glossary
Platform will profit from the new features of the Glossary Farm as they can now
collaborate across various farm entities in one platform.

9.2.1 Target System

The final state after the evolution of the Glossary Platform into the Glossary Farm is
shown in figure 9.2. New components are painted green in the illustration. Within the
Glossary Farm, several glossaries (farm entities) are embedded into a common environment.
Through the enclosing system, users get an overview of all existing glossaries and can
switch between them easily. In addition, terms can now be linked across instances. One
of the greatest advantages of the Glossary Farm is the minimized administrative effort.
Firstly, creating new instances is time-saving and uncomplicated. Secondly, users only
possess one account.

Figure 9.2: Architecture design of the Glossary Farm

92

9.2. Evolution to CIS Farm Architecture

9.2.2 Stakeholders

The Glossary Farm has a wide variety of stakeholders. It is possible that some stakeholders
are embodied by the same person, for example, a Farm User is a member of various
glossaries and becomes in these a Glossary User. The key stakeholders of the Glossary
Farm are:

• Platform Operator(s), who define the purpose of the Glossary Farm and make the
service available to users.

• Farm Admin(s), who take over the administration of the Glossary Farm, such as
invite new users and create, share or deactivate glossaries.

• Farm User(s), who have access to the Glossary Farm. Each farm user can explore
all public glossaries and has an individual list of glossaries where she holds a
membership.

• Glossary Admin(s), who manage a particular glossary. For example, she can add
new members to the glossary or remove existing ones.

• Glossary Moderator(s), who have access to a particular glossary and perform
lightweight administrative activities, such as delete terms.

• Glossary User(s), who have access to a particular glossary and contribute to that.

• Unregistered User(s), who can view all public glossaries, but cannot contribute to
any glossary.

Figure 9.3: Glossary Farm stakeholders

93

9. Application of CIS Farm Architecture Design Approach

9.2.3 Main Use Cases

In the following, the main use cases of the Glossary Farm are described. The use cases
1-12 and 32-34 are based on farm level, the use cases 13-31 are always executed within a
glossary. Artifacts can only be created and edited by members of a glossary. Unregistered
users can view artifacts from public glossaries, artifacts of private glossaries can only be
considered of members. After listing the use cases, it will be illustrated in more detail
which stakeholders are allowed to do what.

1. Create Glossary. Create a new glossary in the farm environment. Depending
on the farm actor role, either the glossary is immediately created or a creation
process is initiated. Farm Admins can create and activate glossaries immediately.
Farm Users can only submit requests for a new glossary, which can then either be
accepted or rejected by a Farm Admin.

2. Change Glossary Status. A glossary has a unique status, depending on the
status users can view the glossary or not (activated, deactivated). The status of
glossaries can only be changed by Farm Admins.

3. Edit Glossary. The properties of glossaries can be edit, such as visibility, descrip-
tion, identifier, assigned categories or administrator of the glossary. Farm Admins
can edit all glossaries, Glossary Admins only assigned glossaries.

4. Create User Account. An Unregistered User can create a Glossary Farm account.
Only with an account, a researcher can become a member of a glossary and create
contributions.

5. Invite a new User. A Farm Admin can invite new users to the Glossary Farm.
Basically, there is no difference to the use case Create User Account, except that
these users follow an invitation.

6. Add User to Glossary. A Farm Admin or Glossary Admin can add a registered
user to a glossary. Only when a user is a member of a glossary, she can create and
edit contributions.

7. Remove User from Glossary. A Farm Admin or Glossary Admin can revoke a
user’s membership in a glossary, afterward the user can no longer collaborate to
the glossary.

8. Create Category. Farm Admins can create new categories, which can then be
assigned to glossaries.

9. Delete Category. A Farm Admin can delete an unused category.

10. Show Categories. Registered and unregistered users can view all categories with

94

9.2. Evolution to CIS Farm Architecture

the assigned public glossaries, registered users also see private glossaries in which
they are members. Thereby relevant glossaries can be found faster by a user because
they are grouped.

11. View Statistics. Various statistics can be generated from the activities of users
in the Glossary Farm, such as total term count, contributions in the last week and
month and contributions per user. The statistics may display different values for
users since activities of private glossaries are only included in the statistics for Farm
Admins and members of these glossaries.

12. View Glossary Statistics. The statistics can also be displayed only for individual
glossary entities.

13. Create Term. Members of a glossary can create new terms, which are the core
elements of a glossary.

14. View Term. Everyone can display the details of a term. Terms of private glossaries
can only be displayed by members.

15. View Term Overview. Everyone can view a summary of all the terms of a
glossary.

16. Edit Term. Terms can be edited by members of a glossary.

17. Add Synonym to a Term. If a term has an interchangeable term in the Glossary
Farm, it is possible to hyperlink these.

18. Add Related Term to Term. If a term has a related, but not identical term in
the Glossary Farm, it is possible to connect these.

19. Delete Term. Farm Admins, Glossary Admins and Glossary Moderators can
delete terms of a glossary. Glossary Users can only delete their own created terms.

20. Term Search. Registered users can search for a term in the Glossary Farm or an
individual glossary entity.

21. Add Definition to a Term. Members of a glossary can add a definition to a
term. Each term have at least one definition, that describes the term more precisely
and specify its clear meaning in a defined context.

22. Show Definitions of a Term. A term is displayed with all associated definitions.

23. Edit Definition of a Term. A definition of a term can be edited by members of
the glossary.

95

9. Application of CIS Farm Architecture Design Approach

24. Remove Definition of a Term. Farm Admins, Glossary Admins and Glossary
Moderators can delete definitions of a term. Glossary Users can only delete their
own created definitions.

25. Create Term Comment. Members of a glossary can create comments to discuss
information about a term.

26. Show Term Comments. Registered users can view all comments about a term.

27. Change Term Quality Level. Members of a glossary can change the quality
level of a term. Validated terms contain only reviewed information.

28. Change Definition Quality Level. Members of a glossary can change the quality
level of a definition. Validated definitions contain only reviewed information.

29. Show Term History. Changes on a term and its associated definitions are logged,
such as editor or creation time of a new definition. The history of a term can be
displayed in addition to the stored knowledge of a term.

30. Upvote Definition. Members of a glossary can upvote a definition of a term, to
show that the definition is meaningful and understandable.

31. Downvote Definition. Members of a glossary can downvote a definition of a
term, to show, e.g., that the definition is not meaningful or confusing.

32. Send Global Digest. The global digest informs users once a week about recent
changes in the glossary and shows interesting stuff, such as trending terms and
definitions (detected by the number of views), or artifacts, which needs validation.

33. Send Personal Digest. The personal digest shows once a week recent changes to
own contributions and suggests similar terms and definitions for further inspection
(based on views, tags, synonyms and related terms)

34. Send Ranking Summary Digest. The ranking summary is sent monthly and
provides information about the number of changes per user, the one with the most
contributions gets the first place. The ranking summary should encourage the users
for further contributions.

96

9.2. Evolution to CIS Farm Architecture

Main Use Cases of the Farm Admin

The main use cases of the stakeholder Farm Admin are illustrated in figure 9.4. This
stakeholder mainly takes care of administrative activities within the Glossary Farm. On
the one hand, the Farm Admin manages the users, invites new ones or deletes inactive
users from the system. On the other hand, she creates new glossaries, change the glossary
status and edit glossary specific settings.

Figure 9.4: Main use cases of the Farm Admin

97

9. Application of CIS Farm Architecture Design Approach

Main Use Cases of the Glossary Admin, Moderator & User

In the following figure 9.5 the use cases of the stakeholders Glossary Admin, Glossary
Moderator and Glossary Admin are shown. All use cases of the Glossary User concern
the collection, verification and viewing of knowledge. For example, create a term, update
a definition, validate a term or view a term and its definitions. In contrast to the Glossary
User, the Glossary Moderator can also delete contributions from others. She monitors
all changes in terms and definitions and deletes incorrect or inappropriate contributions.
The Glossary Admin can additionally perform administrative activities in her glossary,
such as add a user to the glossary or update the glossary description.

Figure 9.5: Main use cases of the Glossary Admin, Moderator and User

98

9.2. Evolution to CIS Farm Architecture

9.2.4 Permission System

To clarify which stakeholders are allowed to do what, the permission system of the
Glossary Farm is described in more detail. The permission system of a glossary farm is
role-based, the authorization within a glossary depends on the global and local role of a
user. Farm Admins are allowed to perform all actions, regardless of whether they are
members of a glossary or not. Glossary Admins can perform all activities inside their
glossaries, while Glossary Users cannot delete artifacts of others. The role system is
described in more detail in figure 9.6.

Figure 9.6: Permission system of the Glossary Farm

99

9. Application of CIS Farm Architecture Design Approach

9.2.5 Evolution Process

Figure 9.7 illustrates the Glossary Platform evolution to a Glossary Farm. The application
was evolved on the basis of the CIS-EVO approach. The general description of the CIS-
EVO approach can be found in section 8.2, each step of the CIS-EVO approach is
described in a separate section. First, the requirements for the Glossary Farm were
derived before the implementation was started. Afterward, the system was evaluated to
check if the requirements were implemented correctly.

Figure 9.7: Evolution process to the Glossary Farm

100

9.3. Development of Prototype

9.3 Development of Prototype
This section describes the tech stack and the data model of the Glossary Farm. In addition,
the implementation of CIS farm characteristics is presented and how we migrated the
data from the Glossary Platform instances to the Glossary Farm.

9.3.1 Tech Stack

The Glossary Farm is a web application that is accessible via a web browser, either on a
PC or mobile device. The platform is implemented in Ruby on Rails with a PostgreSQL
database. We used RubyGems1as package manager to manage and install the needed
libraries (called gems in the ruby environment). Some well-known ruby libraries that
we use are the gem devise for the user management, the gem pundit for the user autho-
rization and the gem audited for versioning. For designing the user interface we used
Bootstrap2, a front-end responsive framework, in combination with Font Awesome3 for
the icons. For the source code management we use a git repository on GitHub4 and
a scrum development process with two weeks sprints. The application is deployed on
Heroku5, where researchers can access the Glossary Farm.

Figure 9.8 illustrates the data model of the Glossary Farm, new tables and attributes
are highlighted in green. The data model is an evolution of the Glossary Platform data
model, which is presented in 5.4.3. The presented data model contains not all tables and
attributes, it only illustrates a selection of the most essential components. Following, a
brief description of the new tables and their relationships:

• The table glossaries contains the farm entities, which were prior standalone CIS
instances. Each entry in the table has a unique identifier, to select the glossary via
the URL in the web browser.

• The table glossary_users contains the assignment of the members to a glossary.

• The table categories stores all the categories of the Glossary Farm.

• The table glossary_categories contains the assignment of the categories to a glossary.

• To the tables activities, terms and taggings a new attribute was added. Through
the attribute glossary_id the corresponding of a glossary data sets can found.

1https://rubygems.org, last visited at 19.02.2019
2https://getbootstrap.com, last visited at 19.02.2019
3https://fontawesome.com, last visited at 19.02.2019
4https://github.com/amusil/glossary-farm, last visited at 19.02.2019
5http://glossary-farm.herokuapp.com, last visted on 1.12.2018

101

https://rubygems.org
https://getbootstrap.com
https://fontawesome.com
https://github.com/amusil/glossary-farm
http://glossary-farm.herokuapp.com

9. Application of CIS Farm Architecture Design Approach

Figure 9.8: Data model of the Glossary Farm

102

9.3. Development of Prototype

9.3.2 Implementation

In the following, we describe how we implemented the system characteristics of a CIS
farm (compare section 6.1) in the Glossary Farm. All fourteen properties of a CIS farm
have been successfully implemented.

1. CIS farm administrator
The Glossary Farm has a user role administrator. Each user with this role can
administrate the farm, such as create or activate glossaries. Figure 9.9 illustrates
the glossaries management overview, to which only users with the role administrator
have access.

Figure 9.9: Screenshot: Glossaries management overview

2. Global unique user account
Each user has a unique user account in the Glossary Farm. Figure 9.10 shows
the user management list at farm level. To this view only users with the role
administrator have access.

Figure 9.10: Screenshot: Users management overview

103

9. Application of CIS Farm Architecture Design Approach

3. Global individual user profile
Each user has a global individual user profile, as shown in figure 9.11.

Figure 9.11: Screenshot: User profile view

4. System-wide permissions
Users of the Glossary Farm have individual rights on the global level, the user roles
Farm Admin and Farm User are implemented. Users with a role admin posses
more rights, e.g., they are allowed to delete other user accounts.

5. Process to create new farm entity
Farm Admins can create a new farm entity immediately. Requests of Farm Users
for a new glossary entity must first be approved by an Farm Admin. Figure 9.12
illustrates the request of a Farm User to crate a new glossary and figure 9.13 shows
the view of a Farm Admin to crate a new glossary. Only after a Farm Admin has
accepted the request for a new glossary other users can access the glossary.

Figure 9.12: Screenshot: Request new glossary by a Farm User

104

9.3. Development of Prototype

Figure 9.13: Screenshot: Create new glossary by a Farm Admin

6. Classification of farm entities in categories
Glossary entities can be subdivided into categories, to identify faster their area of
application. Figure 9.14 shows all categories of the Glossary Farm and figure 9.15
presents all glossaries which are associated with the category Software Engineering.

Figure 9.14: Screenshot: Categories view

Figure 9.15: Screenshot: Detail view of the category Software Engineering

105

9. Application of CIS Farm Architecture Design Approach

7. Visibility of the farm entities
Glossary entities have either public or private visibility. Everyone, included un-
registered user, has access to public glossaries and can view the artifacts. Private
glossaries can only be viewed by members of this glossary. Figure 9.9 shows also
the visibility of the glossary entities, see penultimate column.

8. User assignment to farm entities
Only members of a glossary entity get write permissions, others have just read
rights. The write permission allows users to create new terms or definitions, or to
link a term with another. Figure 9.16 shows the view of a Glossary Admin about
members. In this view she can either add or remove users.

Figure 9.16: Screenshot: User management of a farm entity

9. Individual permission for every farm entity
Users have different rights in each glossary entity, where they are members. In one
glossary they can be the administrator, in others they can act as a moderator or as
a standard user.

10. Artifacts belong to a farm entity
Each term belongs precisely to one glossary. Figure 9.17 shows the term overview
of a glossary entity.

Figure 9.17: Screenshot: Term overview of a glossary

106

9.3. Development of Prototype

11. Create links between different farm entities
Similar terms from different glossaries can be connected within the Glossary Farm.
Figure 9.18 illustrates links between different terms in various glossaries, the glossary
is in parenthesis.

Figure 9.18: Screenshot: Synonyms and related terms

12. Artifact Search
Terms are searchable across all glossary entities. Figure 9.19 shows the search result
for a term.

Figure 9.19: Screenshot: Search result for a term

13. Notification system
The Glossary Farm has a global notification system to encourage users to make
further contributions. The figure 9.20 illustrates a global digest notification. The
global digest informs users once a week about recent changes in the Glossary Farm
and shows interesting stuff. The mail provide a separate section for each glossary,
where the user is a member.

107

9. Application of CIS Farm Architecture Design Approach

Figure 9.20: Screenshot: Weekly Global Digest

14. Individual notification per farm entity
Notifications mails are structured in sections. For each glossary, where the user is
a member, a separate section is created. Furthermore, the users get a notification
if a term or definition of her gets edited.

15. Notification setting for each farm entity
Notifications are customizable for each glossary entity. This makes it possible for
users to receive all, only certain or no messages for a glossary entity. Figure 9.21
and 9.22 illustrates the global and activity notification settings, for each glossary,

108

9.3. Development of Prototype

in which the user is a member, a row is shown.

Figure 9.21: Screenshot: Global notification settings

Figure 9.22: Screenshot: Activity notification settings

9.3.3 Data Migration

We used Pentaho Data Integration6 to migrate the data to the new Glossary Farm.
Pentaho Data Integration consists of a core data integration engine and GUI applications
that allow users to define data integration jobs and transformations. For each table, we
created a new transformation in Pentaho and the necessary steps to migrate the data to
the corresponding Glossary Farm table. All these transformations were executed within
a Pentaho job (compare figure 9.24).

Figure 9.23 shows the transformation steps for the table terms. It should be noted
that the id for the creator, editor and validator had to be overridden in the Glossary
Farm table. For each email address from a Glossary Platform, the id of the corresponding
email address was searched in the Glossary Farm. This is necessary because the users
have only one account in the Glossary Farm and their data has to be mapped to the
corresponding account.

6https://community.hitachivantara.com/docs/DOC-1009855-data-integration-kettle,
last visited at 19.02.2019

109

https://community.hitachivantara.com/docs/DOC-1009855-data-integration-kettle

9. Application of CIS Farm Architecture Design Approach

Figure 9.23: Transformation in Pentaho for the table terms

The process of migrating all necessary data from a Glossary Platform instance to the
Glossary Farm is shown in figure 9.24. This job includes all transformation steps to
transfer the data into the Glossary Farm with correct relationships. This migration job
was repeated for each glossary to be migrated, the glossary specific data were set in the
step Set Variables - for example, the name and description of the glossary or the id of
the administrator.

Figure 9.24: Migration job in Pentaho

110

9.4. Lessons Learned

9.4 Lessons Learned

The CIS farm architecture description was quite helpful for implementing the Glossary
Farm. A CIS farm architecture solves several problems of a classical CIS architecture.
Several glossaries can be embedded into one enclosing environment, which offers a variety
of advantages. For example, (1) effortless creation of a new glossary, (2) only one account
for researches and (3) link knowledge across various glossaries. In addition, the CIS-EVO
approach provides useful guidance for the evolution process. We followed the CIS-EVO
approach during the evolution and had no significant problems to implement the Glossary
Farm. Nevertheless some problems and challenges have arisen during the implementation,
which are briefly explained in the following:

• Obsolete Libraries
The initial system was not updated to the latest version of the libraries (gems)
for several years, which caused some performance and security issues. It takes a
large amount of time to update them to the latest versions and to fix the problems
caused by the upgrade process. Sometimes the code was adapted or rewritten to
use the libraries optimally or to use new features of these.

• Access Authorization
Major efforts were made to design a good access authorization system. Depending
on the visibility of a glossary entity and the role of a user in these glossary entity,
different things are displayed or hidden. For example, unregistered users see only
activity logs of public glossaries on the dashboard. If a logged-in user is a member
of a private glossary, the dashboard is extended with activity logs of this glossary.
The implementation was carried out using a library (gem), which checks if a user
has sufficient permissions to view or manipulate certain elements.

• UI Design
Since a Glossary Farm represents a system-of-systems, it was essential to create a UI
design that allows a clear distinction between farm and glossary entity components.
In advance, some fundamental considerations were made, how a clear separation
of these components are possible. For this purpose, some mock-ups were designed
and afterward compared. Finally, that design was selected where farm components
are in the right sidebar and entity specific components in the header.

• Adapt Dissemination Phase
Another big challenge was to adapt the existing dissemination phase (via e-mail) in
such a way that only relevant entities for a user are included. A user should only
receive e-mail summaries and suggestion for glossaries in which she is a member. To
solve this issue, an additional check has been added during the e-mail generation,
to determine if a user is a member of a glossary. If so, then the glossary is included
in the summary for the user. Therefore, each user will always receive a tailored
email report on her glossary memberships.

111

9. Application of CIS Farm Architecture Design Approach

• Migration
One requirement was that the existing data from the individual glossary instances
are migrated into the new farm platform. For each existing glossary instance, a
correlating farm entity was created. Since various database tables have changed,
no one-to-one transmission to the new system was possible. In particular, it was
necessary to ensure that user accounts are only created once in the Glossary Farm.
Previously, the users had a separate account on each instance. The migration
included a modification of the mapping to terms and definitions (creator, last
editor). The migration was automated using a software. However, a relatively large
number of transformations and jobs were created.

112

CHAPTER 10
Evaluation

This chapter presents the evaluation of the CIS farm prototype. First, the design of the
evaluation is briefly explained, then the study process is described. Finally, the results
are summarized and discussed.

10.1 Study Design
The study design is based on the guidelines provided by Robson [80], Runeson and Höst
[81] and Wohlin et al. [82] for empirical research. Additionally, the ”General survey
guidelines” of Thiel [83] have been considered.

Robson [80] defines a survey as a

”[...] collection of standardized information from a specific population, or
some sample from one, usually, but not necessarily by means of a questionnaire
or interview”

According to [81] the primary objective of a survey is portraying a situation or phenomenon.
Therefore it is a descriptive methodology approach. The combination of qualitative and
quantitative data provides a better understanding of the studied phenomenon. This
approach for data collection is called ”mixed methods”. Quantitative data consist of
numbers and classes, while qualitative data involves i.a. words and descriptions. The
analysis method for quantitative data is statistics, whereas for the qualitative data
categorization and sorting are used [81].

The research process may be subdivided into fixed and flexible. In a fixed design process,
all parameters are pre-defined and remain unchanged after the launch of the study. In
contrary, in a flexible design process key parameters can be adjusted during the study.
Typically a survey has a fixed design process [81].

113

10. Evaluation

Robson [80] as well as Runeson and Höst [81] describe similar processes to perform a case
study. The process is nearly the same for any kind of empirical study and the following
five essential process steps should always be performed [81]:

1. Design. The objectives are set and the study is planned.

2. Preparation for data collection. Procedures and protocols for the data collec-
tion are specified.

3. Collecting evidence. Execution of the study with data collection on the studied
case.

4. Analysis of collected data. The results are examined.

5. Reporting. The collected data are summarized and packaged.

This study is the foundation to answer research question 3, to what extent are the
identified architectural principles and the farm evolution approach sufficient to describe
key characteristics of a CIS farm. Therefore, the goal of the study is to figure out (1)
how well the CIS farm approach is suitable for the glossary environment and (2) and
how well the Glossary Farm supports researchers. The questions of the survey concern,
in particular, the evaluation of the following points:

• Effort reduction for researchers

• Differentiation between glossary and farm components

• Linking of terms

• Locating relevant information

• Notifications

• Platform features

10.1.1 Participants

Since the Glossary Farm is primarily designed and developed for the scientific field, only
persons with university background were contacted. To ensure that all participants
have research reference, only employees, research contacts and students of the Institute
of Information Systems Engineering were contacted. We aimed to guarantee that all
participants understand the importance of uniform definitions of a term. We invited 50
persons via e-mail to be a participant in the survey.

10.1.2 Data Collection

According to Lethbridge et al. [84] we used a second degree technique for the data
collection. The second degree technique is an indirect method, where the scientist collects
raw data without interacting with the subject during the data collection. For the data
collection we used a questionnaire, which was created with Google Forms1 to ensure

1https://www.google.com/forms/about, last visited at 10.10.2018

114

https://www.google.com/forms/about

10.1. Study Design

that the participants could answer the questions online. The questionnaire consists of
21 questions with quantitative and qualitative answer options. Seven questions of the
survey are of qualitative nature (open-ended questions), the remaining fourteen question
are of quantitative nature (closed-ended questions). The questionnaire can be found in
appendix A.2.

Figure 10.1 shows the performed action steps of the participants during the data collection.
The following steps were executed by the participants:

1. Read the E-Mail
Each participant received an invitation e-mail where the context of the survey was
briefly explained. Furthermore, the attachment of the e-mail included a PDF file
with test instructions and a detailed guide to use the Glossary Farm.

2. Execute the Test Instructions
The test instructions included an activity sequence, which the participants should
execute on the Glossary Farm to get familiar with the system. The activity sequence
can be found in Appendix A.1.

3. Evaluate the Glossary Farm Prototype
While the participants performed different activities, they collected various impres-
sions and gained some experience with the glossary farm prototype.

4. Complete the Survey
Finally, the participants answered the online questionnaire and completed the
survey.

Figure 10.1: Action steps of the participants

115

10. Evaluation

10.1.3 Data Analysis

Runeson and Höst [81] mentioned that the data analysis is different for quantitative and
qualitative data. For the analysis of quantitative questions we used descriptive statistics,
such as mean values and histograms to get an understanding if the Glossary Farm fits
the needs of the researchers. The hypothesis generation technique was used to analyze
the qualitative questions. This technique is intended to find hypotheses from the data
and the results are the hypotheses as such. For this, we went unbiased and open to the
study in order to derive hypotheses from the data.

10.1.4 Threats to Validity

Wohlin et al. [85] denotes the validity of a study as

”[...] the trustworthiness of the results, and to what extent the results are true
and not biased by the researchers’ subjective point of view.”

According to Wohlin et al. [85] four types of validity threats exists: internal validity,
external validity, conclusion validity and construct validity. In the following we describe
some threats which are relevant in this study, referring to the terms and explanation
mentioned of Wohlin et al. [85].

Internal Validity

The internal validity deals with whether an experimental treatment affects the outcome or
not. Some factors with impact are how the subjects are selected and divided into different
classes or if special events occur during the experiment. To avoid instrumentation threats
from poorly designed artifacts, the questionnaire, the test instructions and the e-mail
text were reviewed by experienced researchers. Only volunteers are selected for the
questionnaire to prevent the selection threat, since volunteers are usually more motivated
and appropriate for new assignments than the whole population. All participants used
the Glossary Farm for the first time at the time of the survey to avoid the maturation
effect, therefore all participants were unbiased.

External Validity

The external validity concerns the generalization of the results, such as how the findings
are interesting to people outside of the investigated case. We avoid the effect interaction
of selection and treatment by selecting participants with different roles and tasks in a
research project. Furthermore, we asked the participants if they had any experience in
creating a glossary to correlate the results with prior impressions. In addition, to avoid
the interaction of history and treatment threat the questionnaire was available for several
weeks and no changes were made to the Glossary Farm during that time.

116

10.1. Study Design

Conclusion Validity

The conclusion validity deals with the relation between treatment and outcome of the
experiment, there should be a statistical relationship. To avoid the fishing and the error
rate threat, we examined the questions individually and unbiased. We did not fish for a
specific result. To prevent the random heterogeneity of subjects effect we also querying
the participants experience with a glossary. Therefore the risk that the variation of
individuals is larger than due to the treatment is minimized.

Construct Validity

The construct validity is concerned with the relationship between theory and observation,
whether the study represents what the researcher has in mind and what should be
explored on the basis of research questions. To avoid the inadequate preoperational
explication of constructs effect the constructs are sufficiently defined before they are
transformed into measures or treatments. Furthermore, the quality of the results do not
depend on a single quantitative metric - no mono-operation bias threat.

117

10. Evaluation

10.2 Results
This section summarizes the results of the survey. For the analysis of some questions,
the participants were split into two groups: those who already had experience with the
creation or management of a glossary and those who had none.

Participants

In the survey a total of 25 people, with different roles in the research sector participated
(compare figure 10.2).

Figure 10.2: Roles of the participants

Effort reduction & benefits

If the participants are divided into experienced and inexperienced users, participants
with experience have more often the impression that the effort can be reduced with the
Glossary Farm (compare 10.3). Experienced participants also considered more often
that the platform could be easily used for their purposes (compare 10.4). In addition,
experienced participants noted more frequently that the Glossary Farm has extreme
benefits for the involved stakeholders and supports the work of a researcher with project
collaborators (compare 10.5).

118

10.2. Results

Figure 10.3: Effort reduction depending on the experience

Figure 10.4: Level of difficulty to use the platform

Figure 10.5: Benefits for stakeholders

Differentiation between glossary and farm components

96% (24 participants) think that the structure of different glossaries is useful. 76% of
the participants had no difficulty to navigate between the glossaries. About half of the
participants could easily distinguish between glossary and farm components, while 40%
indicated the difficulty with ”average”.

119

10. Evaluation

Figure 10.6: Level of difficulty to navigate and distinguish

Platform features

Another task of the participants was to evaluate several platform elements. Through
the executed activity sequence the participants came in touch with all these elements.
Most of the features were deemed to be useful. The ”glossary and term overview” were
particularly well received. The elements ”tags and category overview”, ”discussion related
to a term” and ”voting on definition” also obtained a good rating score. The usefulness
of elements such as ”email notifications” or ”user profile sites” was instead seen as more
average. The e-mail function probably scored an average because the users did not work
with the system for a long period. They only have been working with the platform during
the survey. Therefore, the participants did not receive any personal summaries, they
only came into contact with the settings for notifications. The exact rating can be found
in figure 10.7.

E-Mail Notifications

An important feature of the Glossary Farm are e-mail notifications. These are intended
to inform users about content changes and activities of other users and should animate
them to further contributions. The participants were surveyed on how often they want
to receive an e-mail and whether they want an extra mail for each glossary. Most of
them agreed that the default time frame is sufficient: once a week for the global news &
personal digest and once a month for the ranking email. Additionally, several participants
pointed out that too many e-mails could be annoying and the time frame should be
adjustable. 84% prefer to receive an email notification with collected information on all
glossaries where they are members. Some participants indicated that too many e-mails
could quickly be considered as spam and because of this, they would instead prefer a
summary.

120

10.2. Results

Figure 10.7: Rating of platform features

Link, Locate & Discover

Experienced participants found it easier to locate useful and relevant information in the
Glossary Farm. Half of the inexperienced participants evaluated the discoverability with
average or difficult, while experienced users rated both only with 26.67%. However, the
majority of the participants found the discoverability as easy (compare figure 10.8). Most
of the experienced and inexperienced participants agreed that the provided information
by the platform and its artifacts is sufficient and useful for their purposes and goals
(compare figure 10.9).

121

10. Evaluation

Figure 10.8: Level of discoverability

Figure 10.9: Usefulness of provided information

86% of the participants think that links between terms in different glossaries are useful.
As advantages the participants specified the possibility (1) to see terms from different
perspectives, (2) to switch easy and fast between various glossaries, (3) to connect different
domains and (4) to exchange knowledge with another domain. Some participants pointed
out a few minor issues, e.g., (1) it could be difficult to find related terms once there
are many terms in the glossaries (2) the connection of terms could be better visualized
(clarity can be lost).

The participants evaluated several statements regarding the Glossary Farm. Based
on these statements, it can be concluded that the Glossary Farm provides a reasonable
basis for the exchange of knowledge. Most agreed that the developed platform represents
a trustful source where researchers can exchange terms and their various definitions.
The links of terms across different glossaries provide a useful addition by extending the
scope of the individual knowledge bases. The review workflow is a relevant and useful
mechanism to ensure correctness and overall quality of a glossaries knowledge base. The
classification of glossaries into categories and the collective use of tags enables an efficient
structuring and a fast discovery of relevant knowledge. Figure 10.10 shows the rating for
each individual statement.

122

10.2. Results

Figure 10.10: Rating of statements about the Glossary Farm

Suggestions for Improvements

The participants of the survey were also asked which features require further improvement
to make them more useful. The following was pointed out:

• Review Process. Not every member of a glossary should be able to validate a
term. This permission should explicitly be given only to some users, to ensure that
the definition of a term is correct.

• Rating stars. A possibility should exist to uncheck a rating star again.

• List of favorite definitions. There should be an overview where all definitions
marked as favorite are displayed.

• Overview and search of User Profiles. There should be a functionality to get
an overview of all users and to search for users. Although this function already
exists for administrators, it should be considered to enable this function for standard
users.

• Introduction. A detailed description of the concrete process and the essential

123

10. Evaluation

functions of the platforms would allow users to become familiar with the system
more quickly. This description should include, among others, (1) how terms can be
created, (2) how terms can be linked, (3) how a glossary can be created, (4) what
benefits tags and categories have and (5) what types of e-mail notifications exist.

• FAQ. An FAQ site should give an overview of all implemented features and a
clarification who, where and what everybody can contribute to a glossary.

Additionally, the participants were also asked what functions they miss in the prototype.
Suggestions for further features are:

• Graph Visualization. An appropriate visualization of connected terms would
reveal better information about their relations.

• Color-Coding. Different colors for the glossaries to make the differentiation
between them easier.

• Badging system. Some kind of badging system to motivate the users to contribute
to a glossary.

• Suggestions for synonyms/related terms. Automated suggestions for syn-
onyms and related terms to facilitate the search for possible connections.

• Direct Messages. Possibility to get in direct contact with other users to exchange
relevant information faster.

• Shortcuts. Shortcuts for key activities (such as create term, edit term, etc.) to
save time.

124

CHAPTER 11
Discussion

CIS may be useful with different kinds of knowledge base content, grouped and organized
around a specific topic. Therefore, operators of a CIS platform want to reuse the system
capabilities for knowledge with similar structures. This need leads to instance clones,
where simply a copy of the CIS is filled with new knowledge and evolves more or less
independently from the original system. However, through the independent deployment,
various limitations arise, such as (1) a large number of instances, (2) many accounts
for one researcher or (3) no cross-instance linking of knowledge possible. So a main
disadvantage of the single deployment strategy is the high administration effort, the
operators must maintain a high number of instances and the users posses for every
instance where they are members a separate account. Furthermore, updates and bug
fixes have to be executed separately for each system.

To eliminate all mentioned limitations this work proposed a new architecture approach,
the CIS farm architecture, which is a particular variant of a system of systems architecture.
Several CIS instances are integrated into one system environment and share specific
functions. In the context of a CIS farm, a CIS instance is called a farm entity. A CIS
farm provides functions to create, deploy and administrate individual and independent
farm entities.

Only with a CIS farm architecture it is possible to:

• host several farm entities on a single, shared platform

• create and maintain a farm instance with a minimum on effort

• link knowledge across various instances

• single user account for contributions in several farm entities

• create notifications based on activities from various farm entities

• generate statistics and analysis over multiple farm entities

125

11. Discussion

A different possible approach that we initially considered was container-based virtual-
ization. With this approach, a container encloses a CIS and isolates the application.
Therefore, updates or bug fixes in the application can be automated via routines. New
containers (CIS instances) can be easily created with the use of a template. Therefore,
through virtualization, the cost of maintenance can be dramatically reduced. However,
some limitations such as single user account or integrated data analysis could not be
resolved with container-based virtualization. Another different approach which was
considered was all-in-one. Thereby the whole knowledge is collected in one CIS instance.
With this approach, the administration effort can be reduced. Besides, users have only
one account, and the data analysis is possible in greater detail. However, new emerging
problems and limitations arise, such as (1) no differentiation of communities is possible
and (2) the loss of clarity between different domains and content. So, we think the CIS
farm approach is the best solutions to integrate several CIS instances in one system
environment and to share knowledge between them.

RQ 1: What are the underlying architectural principles of a CIS farm
platform?

To answer RQ 1, we identified several architecture principles and evolved the CIS archi-
tecture meta-model of Musil et al. [2] to describe a CIS farm architecture. Furthermore,
we have applied the stigmergic process of Musil et al. [2] to the CIS farm to ensure that
a feedback loop exists, which motivates human actors to further contributions. The
stigmergic process of a CIS farm consists only of one additional element that takes care
of the execution of the dissemination rules within the farm entities. Therefore, the CIS
farm uses the same operating procedure as a CIS and applies an information-gathering
model that is well-defined and successful.

The identified CIS farm architecture principles can be found in several platforms in
practice. However, it should be noted that depending on the goal of the platform, the
design decisions how to apply the architectural principles in a CIS farm architecture
can differ. For example, the philosophy of Wikia1 is that they support only open and
collaborative community projects. Therefore, it is not possible to change the visibility
of wiki projects (farm entities) or to restrict the users who can contribute. In contrast,
ShoutWiki2, also a wiki farm, follows a completely different philosophy. Within ShoutWiki
it is possible to limit the visibility of the wikis and make them accessible only to specific
users. However, ShoutWiki limits overlapping search across wikis, searching is only
possible in a wiki. Table 11.1 gives an overview of differences in the design of a CIS farm
architecture using the examples of Wikia and ShoutWiki.

1https://www.fandom.com, last visited at 10.03.2019
2http://www.shoutwiki.com, last visited at 10.03.2019

126

https://www.fandom.com
http://www.shoutwiki.com

Principle Wikia ShoutWiki Glossary Farm
CIS farm administrator X X X

Global unique user account X X X

Global individual user
profile X X X

System-wide permissions X X X

Process to create new farm
entity (users can create a
farm entity)

X X X

Classification of farm
entities in categories X X X

Visibility of the farm
entities

Everything is
public

Different settings
(private or public
access possible)

Different settings
(private or public
access possible)

User assignment to farm
entities

Every registered
user can contribute

Depending on the
visibility setting

Only members can
contribute to a
farm entity

Individual permission for
every farm entity X X X

Artifacts belong to a farm
entity X X X

Create links between
different farm entities X X X

Artifact search

Depends on the
view (whole plat-
form or just in the
farm entity)

Only per wiki

Depends on the
view (whole plat-
form or just in the
farm entity)

Notification system X X X

Individual notification per
farm entity X X X

Notification setting for each
farm entity X X X

Table 11.1: Differences in CIS farm architecture design decisions in practice

127

11. Discussion

As shown in table 11.1 all mentioned CIS farms have implemented the architecture
principles in one way or another. However, it depends on the platform and its requirements
on how the architecture principles are realized. For example, in Wikia all farm entities are
public, but ShoutWiki or the Glossary Farm have different visibility settings. Therefore
it is a design decision how a CIS farm implements the architecture principles.

In summary, the findings of RQ 1 help researches and software architects to better
understand the principles and design a CIS farm architecture. A CIS farm collects
knowledge around a specific topic in farm entities and shares this knowledge between
multiple human actors. Thereby the goal is to increase the knowledge content of the
farm entities through constant contributions of the human actors.

RQ 2: What are the steps to evolve a CIS into a farm platform?

To answer RQ 2, we designed an evolution process that assists software architects with
a step-by-step guide to evolve a CIS to a CIS farm. During the literature study it
turned out that no suitable approach for the evolution of a CIS to a CIS farm could be
found. Only general statements that facilitate software evolution could be identified. The
challenge in evolving a CIS system to a CIS farm is to build an enclosing system that
includes several CIS instances, so-called farm entities. In addition, a CIS farm requires
additional features, such as a user and farm entity administration function. All these
features must be considered and designed.

To answer RQ 2 satisfactorily, we designed the CIS-EVO-Farm approach, a light-weight,
decision-tree-based process that supports the architectural evolution of a CIS platform
into a CIS farm. This approach assists developers and software architects with a step-by-
step guide to evolve a CIS platform into a CIS farm. In order to apply the CIS-EVO-Farm
approach successfully, the following criteria must be fulfilled: (1) access to the CIS code
base, (2) access to the CIS data and (3) all farm entities must have the same structure.

We applied the CIS-EVO-Farm approach to evolve the Glossary Platform into a Glossary
Farm. Steps 1 - 3 of the evolution process were easy and quick to implement. These
steps have mainly concerned the application and features of the Glossary Farm. During
step 4 the architecture design was evolved to fulfill the requirements of a CIS farm. In
step 5, the database schema was adjusted so that data can be stored to match the CIS
farm structure. In step 6 the Glossary Farm was implemented, which was very time
consuming. After thoroughly testing the Glossary Farm in step 7, we concluded that
the designed platform operates satisfactorily. Particular attention was paid to testing
the aggregation and dissemination phase so that the knowledge is correctly collected
and distributed to the users. Finally, in step 8, existing data have been migrated to the
Glossary Farm. This step was also time consuming since various database tables have
changed and no one-to-one transmission to the Glossary Farm was possible. Furthermore,
the IDs of the data had to be changed so that a correct mapping in the new database
schema is possible.

128

Through the practical use of the CIS-EVO-Farm approach, we were able to verify the
approach and adapt it if necessary. However, an adaptation was not necessary because
the application of the evolution process was easily possible. We think that the evolution
process is a well-defined guide for software architects and developers to evolve a CIS to a
CIS farm.

In summary, the findings of RQ 2 support software architects and developers in the
evolution of a CIS to a CIS farm. Our designed approach, the CIS-EVO-Farm approach,
is only valid for the evolution of a CIS into a CIS system-of-system farm platform.

RQ 3: To what extent are the identified architectural principles and the
farm evolution approach sufficient to describe key characteristics of a CIS
farm?

To answer RQ 3, we implemented the Glossary Farm where we applied the findings of
RQ 1 and RQ 2 to verify them. After the implementation, we conducted a user study to
evaluate the Glossary Farm. Most of the participants said that the Glossary Farm can
reduce the effort of creating, using and maintaining a glossary. Participants with previous
experience in the creation and administration of glossaries have seen more benefits in
the CIS farm approach. These participants rated questions about the simplicity and
usefulness of the application better. The conclusion of the study is that the Glossary
Farm provides a reasonable basis for the exchange of knowledge. Most participants agreed
that the application represents a trustful source where researchers can exchange terms
and their various definitions. Furthermore, the links of terms across different glossaries
provide a useful addition by extending the scope of the individual knowledge bases.

The results of the user study show positive reactions and the participants were enthusiastic
about the CIS farm approach that integrates several CIS instances into one system
environment. However, only a minimal set of features were implemented to keep the
effort manageable during the implementation. This opens a broad scope for suggestions
for improving the applicability and usefulness of the Glossary Farm. Therefore, the
participants provided a couple of suggestions for new features, e.g., the graph visualization
of connected terms or automated recommendations for synonyms and related terms. We
are sure if some of these proposed features are implemented in the future, the usefulness
of the Glossary Farm would increase.

In summary, by applying (1) the CIS farm architecture principles, (2) the CIS farm
meta-model and (3) the CIS-EVO-Farm approach a software architect is able to design
and evolve a CIS to a CIS farm.

129

11. Discussion

Similarities and Differences to Related Work

To the best of our knowledge no architecture approach exist in the literature, where several
CIS instances are embedded in one environment and share functionalities. Therefore, we
searched for architecture principles, related approaches and evolution process to gather
ideas for the design of a CIS farm architecture.

Garlan [11] highlighted the importance of a good architecture as it can increase the
overall quality of the application. Therefore, we provided several architecture principles
and a meta-model to support software architects in developing a CIS farm. During
the architecture modeling we considered a variety of design principles to maximize the
usability and extendibility [19, 20].

Vergados et al. [28] described several requirements that a collective intelligence application
should fulfill. Most of these requirements are considered in the architecture description
of the CIS farm. Since the CIS farm provides no web service interfaces to facilitate the
re-use of data the requirement ”facilitate data access” is violated.

We extended the CIS architecture meta-model of Musil et al. [2] to fulfill the needs of
a CIS farm. Furthermore, we used the stigmergic process of this work to describe the
feedback loop of a CIS farm. We added only one additional element to take care of
the execution of the dissemination rules within the farm entities. The principle of the
stigmergic process is the same between CIS and CIS farm.

Guessi et al. [8] mentioned the five main characteristics of an SoS approaches. Although
the CIS farm and SoS have some similarities, some of these characteristics are violated.
For example, all farm entities provide exactly the same functions, they only manage
different data. However, in an SoS, the subsystems have different functionalities and can
exist independently.

Within a multi-tenant environment, tenants share resources, but have their own delimited
area and can customize the application individually to their needs [45]. This is a main
contradiction to the CIS farm approach since all member of a CIS farm share their data
and can contribute to several farm entities.

The database design for multi-tenant systems is a widely discussed issue, i.a. by Chong
et al. [50], Karatas et al. [51] and Wang et al. [52], since there exist varying degrees of
data isolation. For the database design of the Glossary Farm, we used the totally shared
principle (shared database, shared schema) since the data of all farm entities can be
linked.

The world is continuously changing, new business opportunities occur over time. Therefore
there is a need to adjust the software. The largest part of life cycle costs flows into the
evolution of software to respond to the changing requirements [5]. This makes it especially
important to design architecture approaches that are easily extendable. Accordingly,
we design the CIS farm approach, where easily new CIS farm entities can be created.
By applying this approach, it is possible to provide new functions for many individual
communities without updating each CIS instance individually.

130

In the literature, no suitable evolution process could be identified that supports the
evolution of a CIS to a CIS farm. Only general statements that facilitate software
evolution could be identified. For example, an object-oriented or component-based design
improves the reusability [64, 79].

According to Aoyama [68] the evolution of a CIS to a CIS farm is basically a discontinuous
software evolution since some essential aspects such as software architecture and features
are changed.

Limitations of this thesis

There are some limitations of this thesis. In the prototype, only the essential functions
are implemented to verify the CIS farm approach. During the user study, the participants
proposed some useful features that would increase the applicability of the Glossary Farm,
such as different color coding for the glossaries or graph visualization of the connected
terms. Furthermore, we put a limited focus on the usability of the Glossary Farm to
implement the concept of a CIS farm. This was then partially criticized in the user study,
e.g., missing introduction or help page.

The architecture meta-model of Musil et al. [2] has been extended to allow multiple CIS
instances to exist in one environment. No much implementation effort was attached to
security, privacy and data protection. Besides, our architecture model does not support
the interoperability between applications as well as other CIS farms. There are no web
services interfaces available which allow data exchange with other applications.

Furthermore, we applied the new architecture approach only in one case, the Glossary. It
should be applied in other application scenarios to strengthen the outcomes.

131

CHAPTER 12
Conclusion

There is an ongoing interest to optimize the process of knowledge creation and sharing.
A wide range of researchers are engaged in this topic. In the last few years, web-based
social platforms have been developed that use the collective intelligence of connected
groups of people. These platforms efficiently collect and distribute their content among
their user base and can be referred as Collective Intelligence Systems (CIS).

The Glossary Platform is a CIS, which helps researches from multiple domains to
collaborate geographically independent by using a shared online platform. In a glossary
scientists collect and share terms and their various definitions, either for their domain
of study or project-specific knowledge. The existing glossary solution of the TU Wien
has several restrictions, e.g., for every research collaboration a separate glossary instance
needs to be created and deployed. From these restrictions, again new limitations are
derived, for example (1) a large number of instances, (2) many accounts for one researcher
and (3) no cross-instance linking of knowledge possible. Therefore, the Glossary Platform
should be evolved.

To eliminate all mentioned limitations a new architecture approach has been designed,
the CIS farm architecture. A CIS farm provides functions to simply create, deploy and
administrate individual and independent farm entities. A farm entity is a CIS instance,
which is embedded in the farm environment and shares several functions with other farm
entities. The focus of the thesis was to define this CIS farm approach and to delimit it
from other similar approaches.

As a first step, existing literature was investigated to identify similar architecture concepts.
We could identify two similar architecture approaches, the system of system architecture
and the multi-tenant architecture. However, both approaches pursue goals too different
as to be used as a foundation for a CIS farm architecture. An essential difference to
SoS is the CIS farms violation of the principles geographical distribution and managerial
independence. Farm entities are embedded in a single environment and cannot exist alone.

133

12. Conclusion

Furthermore, the farm entities have no independent life cycle, they are bound to the life
cycle of the global system. If the global system crashes or shuts down, the farm entities
are also no longer reachable. In contrast to multi-tenant architecture, the farm entities
are global available to all users and not isolated and invisible to others. It is, therefore,
possible to link artifacts of different farm entities.

Additionally, we reviewed available systems with a CIS farm approach in chapter 4 to
identify and categorize common features and capabilities. One challenge was to find
similarities in widely differing systems in diverse application areas. Nevertheless, several
common features could be identified, such as (1) single user accounts, (2) a simple creation
procedure of a new farm entity and (3) regular notifications about recent activities in
the system.

Based on the results of the literature review and the survey about existing CIS farm
platforms the architecture principles of a CIS farm were derived. Examples for this
principles are a single user account or links between different farm entities. Based on the
SIS architecture pattern of [2] the CIS farm meta-model was defined. This meta-model
contains all necessary components and principles to design a CIS farm architecture. In
addition, the stigmergic process of Musil et al. [2] was described in context of the CIS farm
architecture. The stigmergic process is a permanent feedback loop, which should motivate
human actors to further contributions. To fulfill the requirements for a stigmergic process
on farm level, we added a new element, the dissemination routine. The dissemination
routine in each farm entity deals only with the execution of the dissemination rules,
which are defined at the global level. Therefore, the stigmergic process of CIS is equal to
that of a CIS farm, it supports only various farm entities.

To support software architects and developers in the evolution of a CIS platform to a
CIS farm we introduced the CIS-EVO-Farm approach. The CIS-EVO-Farm approach is
a step-by-step guide for the architecture evolution. In order to apply the CIS-EVO-Farm
approach successfully, the following criteria must be fulfilled: (1) access to the CIS code
base, (2) access to the CIS data and (3) all farm entities must have the same structure.
The CIS-EVO-Farm approach consists of the following steps:

1. Identification of CIS farm and farm entity properties

2. Characterize user groups

3. Determine the permission system

4. Evolve the system architecture

5. Design database schema

6. Implementation of the new structure and features

7. Verification of the CIS farm

8. Migrate Data to the CIS farm

134

After the completion of all steps, a CIS farm was successfully implemented. In addition,
we developed a guide for the data migration process to transfer the data from various
established CIS platforms to the CIS farm environment.

To verify our contributions, we implemented the Glossary Farm where we applied the
identified architecture principles for a CIS farm. Furthermore, we used the CIS-EVO-
Farm approach to evolve the Glossary Platform to a Glossary Farm. Afterwards, we
evaluated the Glossary Farm using a user study. The user study was divided into several
steps. First, the participants had to read the received test instructions and execute them
afterwards in the Glossary Farm. Thereby, the participants became familiar with the
application and were able to complete the questionnaire based on the received impressions.
Most of the participants said that the Glossary Farm can reduce the effort of creating,
using and maintaining a glossary. Participants with previous experience in the creation
and administration of glossaries have seen more benefits in the CIS farm approach. These
participants rated questions about the simplicity and usefulness of the application better.
The conclusion of the study is that the Glossary Farm provides a reasonable basis for
the exchange of knowledge. Most participants agreed that the application represents
a trustful source where researchers can exchange terms and their various definitions.
Furthermore, the links of terms across different glossaries provide a useful addition by
extending the scope of the individual knowledge bases.

In summary, the contributions of this thesis provide a solid foundation for researches,
software architects and developers to describe and design a complex system-of-systems CIS.
We defined the CIS farm architecture approach to describe how several CIS instances can
be embedded into one system environment. Through this approach, the administration
effort can be reduced dramatically and allows an integrated data analysis and the exchange
of data through several CIS instances, so-called farm entities. Through the CIS farm
meta-model and the CIS-EVO-farm approach, we provide a method and guidance to
design a CIS farm architecture and to support the architecture evolution of a CIS to a
CIS farm.

There are a lot of possibilities for continuing the research in this subject area. The
introduced architectural meta-model provides a solid foundation, but also offers range for
enhancement. It could be interesting to categorize CIS farms into different subtypes and
to identify their differences and what these differences mean for their architecture design.
Furthermore, it would be conceivable to develop an architecture viewpoint, framework or
reference architecture for CIS farms.

Besides, it is possible to extend the feature set of the Glossary Farm. These features
could be considered as an optional extension set, built-in as needed into the concrete
architecture of the Glossary Farm. In the following, some valuable features for a Glossary
Farm are described:

135

12. Conclusion

• Extend functions for farm entities
Farm entities could have an extended set of features. Some features are only
available for certain farm entities. An administrator could unlock these features for
a farm entity, such as a chat system for a farm entity.

• Interface to exchange data with other CIS farms.
A functionality could be added, where different CIS farm exchanges their knowledge
automatically. This could be in the form of links pointing to relevant content in
another CIS farm.

• Machine learning algorithm for CI artifact recommendation.
A machine learning algorithm can be implemented to give users suggestions for
interesting CI artifacts in the dissemination phase. Over time the algorithm suggests
more appropriate CI artifacts, e.g., the algorithm learns based on the user clicks on
CI artifacts of e-mails.

In addition, to increase the usefulness of the Glossary Farm, suggested features of the
participants of the user study could be implemented. Some of these features are very
expensive to implement but provide the users better applicability and usability. Some
new Glossary Farm features could be:

• A graphical visualization which provides a better overview of connected terms and
their relations.

• A badging system which motivates the users for further and more contributions.

• An automated suggestion system which recommends synonyms and related terms
for a term.

Moreover, it would be conceivable and beneficial to evaluate the CIS farm architecture
approach in another application scenario which could strengthen the outcomes of this
work. This could be of high importance, since in the modern world the interest of
networked and collectively created knowledge bases is growing rapidly.

136

APPENDIX A
Survey

A.1 Activity sequence of the test instructions
The invitation e-mail contained a PDF file with test instruction, which included a se-
quence of activities. This activity sequence had to be performed by the participants to
get familiar with the Glossary Farm. The content of the PDF file is shown below.

Instructions
This survey investigates the applicability and usefulness of the Glossary Platform pro-
totype, which aims to support the collaborations among researchers and their partners
by facilitating the creation and management of several glossaries. A typical use of a
glossary in research collaborations is to reduce terminological misunderstandings and
inconsistencies by providing a single agreed definition for a particular term. The Glossary
Platform aims to minimize the administration effort, which arises, e.g., from handwritten
notes or Word documents, including editing, sharing, access, track keeping, monitoring,
distributing, and commenting.

On the Glossary Platform you can find several online glossaries, each shared between
members of different user groups who have a central access to the collected knowledge
about terms. A glossary allows researchers from multiple domains to collaborate geo-
graphically independently and to collect and share terms and their various definitions in
a field/domain

1. Perform Activity Sequence on Prototype

1. Open the Glossary platform prototype: http://glossary-farm-dev.herokuapp.
com

2. Login (username: survey, password: survey).

3. Open the Glossary ”Survey”.

137

http://glossary-farm-dev.herokuapp.com
http://glossary-farm-dev.herokuapp.com

A. Survey

4. Create a new term with at least one definition (feel free to choose a term with
which you are familiar).

5. Relate your new term with the term ”Example” of the Glossary ”CIS-Farm” either
by using the ”Synonym” or ”Related Term” relation.

6. Vote on a recently created definition of a term.

7. Mark a definition as your favourite.
8. Open the “Tag overview” of the Glossary Platform and click on the tag ”CI”.

9. Add a new comment to the term ”Example” in the Glossary ”CIS-Farm”.

10. Open the ”Communication Activity Settings” under your ”Settings”.

11. View the user profile of the user ”Farm Admin”.

12. Open the category overview and click on the category ”Software Engineering”.

13. View the statistics of the Glossary Platform.

2. Answer Questionnaire
If you are ready, please fill in your answers to the questionnaire: https://goo.gl/
forms/YDOqcQ7Lh5uYqKol2

Answering the questions should not take longer than 10-15 minutes. All your contributions
and answers will remain confidential and will be used only for evaluation purposes. After
completing the study, all provided information will be deleted.

We highly appreciate your feedback.

138

https://goo.gl/forms/YDOqcQ7Lh5uYqKol2
https://goo.gl/forms/YDOqcQ7Lh5uYqKol2

A.2. Structure of the Questionnaire

A.2 Structure of the Questionnaire
The structure of the questionnaire can be considered below. All questions are listed with
all the possible answer options.

Question text Answer options

1 Which role do you have?

◦ Professor
◦ Post-doc
◦ Pre-doc
◦ Master Student
◦ Bachelor Student
◦ Research Project Member

2 Have you ever created / managed / main-
tained a glossary?

◦ Yes
◦ No

3 If yes, what form was chosen for the glossary?

◦ a hand-written document
◦ an editor-based document like
Word or Latex document

◦ a table-based document like a
spreadsheet

◦ online document
◦ wiki
◦ others

4
Do you think the effort for researchers to cre-
ate, use, manage and maintain a glossary can
be reduced with the Social Glossary Platform?

◦ Yes
◦ Maybe
◦ No

5 How would you define the level of difficulty
to use the platform for your purposes?

◦ Very easy
◦ Easy
◦ Average
◦ Difficult
◦ Very difficult

139

A. Survey

6 How would you define the level of difficulty
to navigate between the glossaries?

◦ Very easy
◦ Easy
◦ Average
◦ Difficult
◦ Very difficult

7
How would you define the level of difficulty
to distinguish between the individual glossary
components and the overall platform?

◦ Very easy
◦ Easy
◦ Average
◦ Difficult
◦ Very difficult

8 Do you think the structure of the different
glossaries is useful?

◦ Yes
◦ No

9 How would you define the level of discoverabil-
ity to find useful and relevant information?

◦ Very easy
◦ Easy
◦ Average
◦ Difficult
◦ Very difficult

10
Did you experience the information provided
by the platform and its artifacts are sufficient
and useful for your purposes and goals?

◦ Very useful
◦ Useful
◦ Average
◦ Not useful
◦ Not very useful

11 Is it easy to participate in the process, in
discussions or to create new contributions?

◦ Yes, everything worked fine.
◦ No, it did not work for me.

12 If not, what were occurring problems? free text

13
Do you think the links between terms in differ-
ent glossaries is useful (cross-reference knowl-
edge)?

free text

140

A.2. Structure of the Questionnaire

14

Currently, by default you receive a global news
& personal digest once a week, and a ranking
email showing all involved glossaries once a
month. Do you think receiving this structure
of email notifications and time frame is useful?

free text

15 Would you prefer to receive email notifications
for each involved glossary? If not, why? free text

16

Do you think that using this platform could
have a benefit for involved stakeholders and
support the work of a researcher with project
collaborators?

◦ Extreme benefits
◦ Little benefits
◦ Hardly any benefits
◦ No benefits

17

Please rate the following platform elements
regarding their usefulness.(matrix)

◦ Farm Overview - Glossaries
◦ Farm Overview - Tags
◦ Farm Overview - Categories
◦ Email Notifications
◦ User profile sites
◦ Terms Overview of a Glossary

◦ Very useful
◦ Useful
◦ Average
◦ Not useful
◦ Not very useful

◦ Discussions related to a term
◦ Statistics
◦ Mark a definition as your favourite
◦ Voting on definitions

18 Why do you think these elements are useful /
not useful? free text

141

A. Survey

19

Please rate the following statements based on
your opinion of the platform.(matrix)

◦ Researchers can exchange terms and their
various definitions, review them and collab-
oratively select them w.r.t. the glossaries’
topic of interest.

◦ Stakeholders can look for terms and associ-
ated definitions from a trustful source.

◦ Linking terms of different glossaries pro-
vides a useful addition by extending the
scope of the individual glossary’s knowledge
base with other domains or application ar-
eas.

◦ Having a single user account for multiple
glossaries broadens the potential audience
and also pool of prospective contributors.

◦ The review workflow on terms and defini-
tions is a relevant mechanism to ensure cor-
rectness and overall quality of a glossary’s
knowledge base.

◦ The classification of glossaries into cate-
gories enables an easy and fast discovery of
relevant glossaries.

◦ The collective use of tags allows an efficient
structuring of terms across all glossaries.

◦ The platform’s statistics (across all glos-
saries) provide detailed insights into the
activities of the users and their contribu-
tions in the system.

◦ The process of creating a new glossary is
possible in an easy and efficient way.

◦ Strongly Agree
◦ Agree
◦ Uncertain/not applicable
◦ Disagree
◦ Strongly Disagree

20 Which features require further improvement
to make them more useful? free text

21 What functionalities do you miss in the pro-
totype? free text

Table A.1: Questions of the Survey

142

Acronyms

AMD Analysis, Management and Dissemination System.
AR Actor Record.

CI Collective Intelligence.
CIS Collective Intelligence Systems.
CIS-AF Architecture Framework for Collective Intelligence Systems.
CRM Customer Relationship Management.
CS Constituent System.
CSCW Computer-Supported Cooperative Work.

Q&A Questions and Answers.
QoS Quality of Service.

RQ Research Question.

SaaS Software as a Service.
SIS Stigmergic Information System.
SLA Service Level Agreement.
SOA Service-Oriented Architecture.
SoS Systems of Systems.
SoSE System of Systems Engineering.

URL Uniform Resource Locator.

VM Virtual machine.

143

List of Figures

1.1 Limitations of the current Glossary Platform 3
1.2 Container-based virtualization of the Glossary environment 5
1.3 Glossary Farm Structure . 6
1.4 Overview of the main thesis contributions 7

2.1 Software architecture as a bridge between requirements and implementation
[11] . 10

2.2 Software system life cycle [17] . 11
2.3 CIS process with content aggregation and feedback of information [4] . . . 16
2.4 SIS multi-layer model [33] . 17
2.5 Metamodel of the SIS pattern [33] . 18
2.6 Services produced and consumed by Systems (based on [41]) 23
2.7 How the Arrowhead core components support the System of Systems [41] 24
2.8 Stakeholders and their activities in a multi-tenant SaaS application [46] . 26
2.9 Two kinds of multi-tenancy patterns (based on [49]) 27
2.10 Different data storage strategies [51] . 28
2.11 Totally shared database strategies [51] . 29
2.12 Metadata-driven architecture [54] . 30
2.13 Architecture of a SaaS platform based on the model-driven approach[55] . . 31
2.14 The simple staged model (based on [61]) 34
2.15 The versioned staged model (based on [61]) 35

3.1 Overview of the research challenges . 40
3.2 Overview of research activities in this thesis 44

4.1 Google Trends - Wiki-Farms, web search between April 2017 and April 2018 46
4.2 Google Trends - Cloud Storage, web search between April 2017 and April 2018 47
4.3 Google Trends - E-Mail servies, web search between April 2017 and April

2018 . 48
4.4 Magic Quadrant for the CRM Customer Engagement Center [76] 48

5.1 Main use case of a glossary . 58
5.2 Requirements of a modern glossary . 63
5.3 Additional features of a modern glossary 64

145

5.4 Stakeholder of the Glossary Platform . 65
5.5 Different quality levels of terms . 66
5.6 Major use cases of the Glossary Platform 67
5.7 Simplified data model of the Glossary Platform 69

6.1 System Characteristics . 73

7.1 Farm Structure . 75
7.2 Stigmergic CIS farm process with aggregation and dissemination phases . 78
7.3 Visualization of the dissemination phase 79
7.4 Meta-model of the SIS pattern [2] describing a CIS architecture 80
7.5 Meta-model of a CIS farm architecture . 81

8.1 Overview of the CIS-EVO-Farm approach 88
8.2 Migration process . 90

9.1 Architecture design of the Glossary Platform 92
9.2 Architecture design of the Glossary Farm 92
9.3 Glossary Farm stakeholders . 93
9.4 Main use cases of the Farm Admin . 97
9.5 Main use cases of the Glossary Admin, Moderator and User 98
9.6 Permission system of the Glossary Farm 99
9.7 Evolution process to the Glossary Farm 100
9.8 Data model of the Glossary Farm . 102
9.9 Screenshot: Glossaries management overview 103
9.10 Screenshot: Users management overview 103
9.11 Screenshot: User profile view . 104
9.12 Screenshot: Request new glossary by a Farm User 104
9.13 Screenshot: Create new glossary by a Farm Admin 105
9.14 Screenshot: Categories view . 105
9.15 Screenshot: Detail view of the category Software Engineering 105
9.16 Screenshot: User management of a farm entity 106
9.17 Screenshot: Term overview of a glossary 106
9.18 Screenshot: Synonyms and related terms 107
9.19 Screenshot: Search result for a term . 107
9.20 Screenshot: Weekly Global Digest . 108
9.21 Screenshot: Global notification settings 109
9.22 Screenshot: Activity notification settings 109
9.23 Transformation in Pentaho for the table terms 110
9.24 Migration job in Pentaho . 110

10.1 Action steps of the participants . 115
10.2 Roles of the participants . 118
10.3 Effort reduction depending on the experience 119
10.4 Level of difficulty to use the platform . 119

146

10.5 Benefits for stakeholders . 119
10.6 Level of difficulty to navigate and distinguish 120
10.7 Rating of platform features . 121
10.8 Level of discoverability . 122
10.9 Usefulness of provided information . 122
10.10Rating of statements about the Glossary Farm 123

147

List of Tables

4.1 Comparison of CIS farm platforms . 52
4.2 Comparison of Multi-Tenant CSCW systems 54

5.1 Advantages and disadvantages of available glossary solutions 62

11.1 Differences in CIS farm architecture design decisions in practice 127

A.1 Questions of the Survey . 142

149

Bibliography

[1] Daniele Miorandi, Vincenzo Maltese, Michael Rovatsos, Anton Nijholt, and James
Stewart, editors. Social Collective Intelligence: Combining the Powers of Humans
and Machines to Build a Smarter Society. Springer International Publishing, 2014.

[2] Juergen Musil, Angelika Musil, and Stefan Biffl. SIS: An Architecture Pattern for
Collective Intelligence Systems. In Proceedings of the 20th European Conference on
Pattern Languages of Programs - EuroPLoP ’15, pages 1–12. ACM, 2015.

[3] Toby Segaran. Programming Collective Intelligence. O’Reilly Media, first edit
edition, 2007.

[4] Juergen Musil, Angelika Musil, and Stefan Biffl. Introduction and Challenges of
Environment Architectures for Collective Intelligence Systems. Agent Environments
for Multi-Agent Systems IV, pages 76–94, 2015.

[5] Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. A systematic review of
software architecture evolution research. Information and Software Technology, 54
(1):16–40, 2012.

[6] Teemu Kämäräinen, Yuanqi Shan, Matti Siekkinen, and Antti Ylä-Jääski. Virtual
Machines vs. Containers in Cloud Gaming Systems. In Proceedings of the 2015
International Workshop on Network and Systems Support for Games, NetGames ’15,
pages 1–6. IEEE, 2015.

[7] John Paul Walters, Vipin Chaudhary, Minsuk Cha, Salvatore Guercio Jr., and Steve
Gallo. A Comparison of Virtualization Technologies for HPC. In 22nd International
Conference on Advanced Information Networking and Applications (aina 2008),
pages 861–868. IEEE, 2008.

[8] Milena Guessi, Valdemar V. G. Neto, Thiago Bianchi, Katia R. Felizardo, Flavio
Oquendo, and Elisa Y. Nakagawa. A systematic literature review on the description
of software architectures for systems of systems. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing - SAC ’15, pages 1433–1440. ACM, 2015.

[9] Jaap Kabbedijk, Cor-Paul Bezemer, Slinger Jansen, and Andy Zaidman. Defining
multi-tenancy: A systematic mapping study on the academic and the industrial
perspective. Journal of Systems and Software, 100:139–148, 2015.

151

[10] Project: WikiFarm, 2017. URL https://www.mediawiki.org/wiki/
Project:WikiFarm. Last visited at 14.10.2018.

[11] David Garlan. Software architecture: a roadmap. In Proceedings of the conference
on The future of Software engineering - ICSE ’00, pages 91–101. ACM, 2000.

[12] Len Bass, Paul Clements, and Rick Kazman. What Is Software Architecture? In
Software architecture in practice, chapter 1. Addison Wesley, third edition, 2012.

[13] Mary Shaw and David. Garlan. Introduction. In Software Architecture: Pespectives
on an Emerging Discipline, chapter 1, pages 1–18. Prentice Hall, 1996.

[14] Richard N. Taylor, Nenad. Medvidovic, and Eric M. Dashofy. Architectures in
Context: The Reorientation of Software Engineering. In Software Architecture:
Foundations, Theory, and Practice, chapter 2, pages 23–55. Wiley, 2010.

[15] Kai. Qian, Xiang. Fu, LiXin. Tao, Chong-wei. Xu, and Jorge. Diaz-Herrera. Intro-
duction to Software Architecture. In Software Architecture and Design Illuminated,
chapter 1. Jones and Bartlett Publishers, 2010.

[16] M. Galster, A. Eberlein, and M. Moussavi. Systematic selection of software architec-
ture styles. IET Software, 4(5):349–360, 2010.

[17] A. Bijlsma, B.J. Heeren, E.E. Roubtsova, and S. Stuurman. Introduction to software
architecture. In Software architecture, pages 6–17. FTA 2011 Free Technology
Academy, 2011.

[18] Paul. Clements, Felix. Bachmann, Len. Bass, David. Garlan, James. Ivers, Reed.
Little, Robert. Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, 2003.

[19] patterns & practices Developer Center. Chapter 2: Key Principles of Software
Architecture, 2009. URL https://msdn.microsoft.com/en-us/library/
ee658124.aspx. Last visited at 04.07.2018.

[20] Tutorialspoint. Software Architecture and Design Key Principles. URL
https://www.tutorialspoint.com/software_architecture_design/
key_principles.htm. Last visited at 04.07.2018.

[21] Ioanna Lykourentzou, Dimitrios J. Vergados, and Vassili Loumos. Collective in-
telligence system engineering. In Proceedings of the International Conference on
Management of Emergent Digital EcoSystems - MEDES ’09, page 134. ACM, 2009.

[22] Pierre Lévy. From social computing to reflexive collective intelligence: The IEML
research program. Information Sciences, 180(1):71–94, 2010.

[23] Thomas W. Malone, Robert Laubacher, and Chrysanthos N. Dellarocas. Harnessing
Crowds: Mapping the Genome of Collective Intelligence. SSRN Electronic Journal,
2009.

152

https://www.mediawiki.org/wiki/Project:WikiFarm
https://www.mediawiki.org/wiki/Project:WikiFarm
https://msdn.microsoft.com/en-us/library/ee658124.aspx
https://msdn.microsoft.com/en-us/library/ee658124.aspx
https://www.tutorialspoint.com/software_architecture_design/key_principles.htm
https://www.tutorialspoint.com/software_architecture_design/key_principles.htm

[24] Francis Heylighen. Collective Intelligence and its Implementation on the Web:
Algorithms to Develop a Collective Mental Map. Computational & Mathematical
Organization Theory, 5(3):253–280, 1999.

[25] Michael F Goodchild. Citizens as Voluntary Sensors: Spatial Data Infrastructure
in the World of Web 2.0. International Journal of Spatial Data Infrastructures
Research, 2:24–32, 2007.

[26] Kari A. Hintikka and Kari A. Web 2.0 and the collective intelligence. In Proceedings
of the 12th international conference on Entertainment and media in the ubiquitous
era - MindTrek ’08, page 163. ACM, 2008.

[27] Dawn G. Gregg and Dawn G. Designing for collective intelligence. Communications
of the ACM, 53(4):134, 2010.

[28] Dimitrios J. Vergados, Ioanna Lykourentzou, and Epaminondas Kapetanios. A
resource allocation framework for collective intelligence system engineering. In
Proceedings of the International Conference on Management of Emergent Digital
EcoSystems - MEDES ’10, page 182. ACM, 2010.

[29] Tim O’Reilly. What Is Web 2.0 - O’Reilly Media, 2005. URL http://www.
oreilly.com/pub/a/web2/archive/what-is-web-20.html. Last visited
at 13.11.2018.

[30] Plerre-P. Grassé. La reconstruction du nid et les coordinations inter-individuelles
chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai
d’interprétation du comportement des Termites constructeurs. Insectes Sociaux, 6
(1):41–80, 1959.

[31] Juergen Musil, Angelika Musil, Danny Weyns, and Stefan Biffl. An Architecture
Framework for Collective Intelligence Systems. In 2015 12th Working IEEE/IFIP
Conference on Software Architecture, pages 21–30. IEEE, 2015.

[32] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the A&A meta-
model for multi-agent systems. Auton Agent Multi-Agent Syst, 17:432–456, 2008.

[33] Angelika Musil, Juergen Musil, and Stefan Biffl. Major variants of the SIS architecture
pattern for collective intelligence systems. In Proceedings of the 21st European
Conference on Pattern Languages of Programs - EuroPlop ’16, pages 1–11. ACM,
2016.

[34] Elisa Y. Nakagawa, Marcelo Gonçalves, Milena Guessi, Lucas B. R. Oliveira, and
Flavio Oquendo. The state of the art and future perspectives in systems of systems
software architectures. In Proceedings of the First International Workshop on
Software Engineering for Systems-of-Systems - SESoS ’13, pages 13–20. ACM, 2013.

153

http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html

[35] Eduardo Silva, Everton Cavalcante, Thais Batista, Flavio Oquendo, Flavia C.
Delicato, and Paulo F. Pires. On the Characterization of Missions of Systems-of-
Systems. In Proceedings of the 2014 European Conference on Software Architecture
Workshops - ECSAW ’14, pages 1–8. ACM, 2007.

[36] Mark W. Maier. Architecting Principles for Systems-of-Systems. INCOSE Interna-
tional Symposium, 6(1):565–573, 1996.

[37] Charles Keating, Ralph Rogers, Resit Unal, David Dryer, Andres Sousa-Poza, Robert
Safford, William Peterson, and Ghaith Rabadi. System of systems engineering. EMJ
- Engineering Management Journal, 15(3):36–45, 2003.

[38] Gary D. Wells and Andrew P. Sage. Engineering of a System of Systems. In System
of Systems Engineering: Innovations for the 21st Century, chapter 3, pages 44–76.
John Wiley & Sons, Inc., 2009.

[39] Claire Ingram, Richard Payne, Simon Perry, Jon Holt, Finn Overgaard Hansen, and
Luis Diogo Couto. Modelling patterns for systems of systems architectures. In 2014
IEEE International Systems Conference Proceedings, pages 146–153. IEEE, 2014.

[40] Soumya Simanta, Edwin Morris, Grace A. Lewis, and Dennis B. Smith. Engineering
lessons for systems of systems learned from service-oriented systems. In IEEE
International Systems Conference Proceedings, pages 634–639. IEEE, 2010.

[41] Pal Varga, Fredrik Blomstedt, Luis Lino Ferreira, Jens Eliasson, Mats Johansson,
Jerker Delsing, and Iker Martínez de Soria. Making system of systems interoperable –
The core components of the arrowhead framework. Journal of Network and Computer
Applications, 81:85–95, 2017.

[42] Cor-Paul Bezemer and Andy Zaidman. Multi-tenant SaaS applications: maintenance
dream or nightmare? In Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software Evolution
(IWPSE) on - IWPSE-EVOL ’10, page 88. ACM, 2010.

[43] Jm Kaplan. Saas: Friend or foe? Business Communications Review, 37(June):48,
2007. URL http://www.webtorials.net/main/resource/papers/BCR/
paper125/06kaplan.pdf. Last visited at 11.09.2018.

[44] Haitham Yaish, Madhu Goyal, and George Feuerlicht. An elastic multi-tenant
database schema for software as a service. In Proceedings - IEEE 9th International
Conference on Dependable, Autonomic and Secure Computing, DASC 2011, pages
737–743. IEEE, 2011.

[45] Sanjukta Pal, Amit Kr Mandal, and Anirban Sarkar. Application Multi-Tenancy for
Software as a Service. ACM SIGSOFT Software Engineering Notes, 40(2):1–8, 2015.

154

http://www.webtorials.net/main/resource/papers/BCR/paper125/06kaplan.pdf
http://www.webtorials.net/main/resource/papers/BCR/paper125/06kaplan.pdf

[46] Sumit Kalra and T. V. Prabhakar. Patterns for Managing Tenants in a Multi-tenant
Application. In Proceedings of the 22nd European Conference on Pattern Languages
of Programs - EuroPLoP ’17, pages 1–10. ACM, 2017.

[47] Bret Waters. Software as a service: A look at the customer benefits. Journal of
Digital Asset Management, 1(1):32–39, 2005.

[48] Hailue Lin, Kai Sun, Shuan Zhao, and Yanbo Han. Feedback-Control-Based Per-
formance Regulation for Multi-Tenant Applications. In 2009 15th International
Conference on Parallel and Distributed Systems, pages 134–141. IEEE, 2009.

[49] Chang Jie Guo, Wei Sun, Ying Huang, Zhi Hu Wang, and Bo Gao. A Framework
for Native Multi-Tenancy Application Development and Management. In The 9th
IEEE International Conference on E-Commerce Technology and The 4th IEEE
International Conference on Enterprise Computing, E-Commerce and E-Services
(CEC-EEE 2007), pages 551–558. IEEE, 2007.

[50] Frederick Chong, Gianpaolo Carraro, and Roger Wolter. Multi-Tenant Data
Architecture. 2006. URL http://ramblingsofraju.com/wp-content/
uploads/2016/08/Multi-Tenant-Data-Architecture.pdf. Last visited
at 15.07.2018.

[51] Gozde Karatas, Ferit Can, Gamze Dogan, Cemile Konca, and Akhan Akbulut.
Multi-tenant architectures in the cloud: A systematic mapping study. In 2017
International Artificial Intelligence and Data Processing Symposium (IDAP), pages
1–4. IEEE, 2017.

[52] Zhi Hu Wang, Chang Jie Guo, Bo Gao, Wei Sun, Zhen Zhang, and Wen Hao An. A
Study and Performance Evaluation of the Multi-Tenant Data Tier Design Patterns
for Service Oriented Computing. In IEEE International Conference on e-Business
Engineering, pages 94–101. IEEE, 2008.

[53] R Krebs, Christof Momm, and Samuel Kounev. Architectural Concerns in Multi-
tenant SaaS Applications. Closer, pages 426–431, 2012.

[54] Craig D. Weissman and Steve Bobrowski. The design of the force.com multitenant
internet application development platform. In Proceedings of the 35th SIGMOD
international conference on Management of data - SIGMOD ’09, page 889. ACM,
2009.

[55] Xiaoyan Jiang, Yong Zhang, and Shijun Liu. A Well-designed SaaS Application
Platform Based on Model-driven Approach. In 2010 Ninth International Conference
on Grid and Cloud Computing, pages 276–281. IEEE, 2010.

[56] Israel Herraiz, Daniel Rodriguez, Gregorio Robles, and Jesus M. Gonzalez-Barahona.
The evolution of the laws of software evolution. ACM Computing Surveys, 46(2):
1–28, 2013.

155

http://ramblingsofraju.com/wp-content/uploads/2016/08/Multi-Tenant-Data-Architecture.pdf
http://ramblingsofraju.com/wp-content/uploads/2016/08/Multi-Tenant-Data-Architecture.pdf

[57] M M Lehman, J F Ramil, and G Kahen. Evolution as a Noun and Evolution as a
Verb. Workshop on Software and Organisation Co-evolution (SOCE), 2000.

[58] Priyadarshi Tripathy and Kshirasagar Naik. Software Evolution and Maintenance:
A Practitioner’s Approach. John Wiley & Sons, Inc., 2014.

[59] M.M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE, 68(9):1060–1076, 1980.

[60] M. M. Lehman. Laws of software evolution revisited. In Proceedings of the 5th
European Workshop on Software Process Technology, volume 1149, pages 108–124.
Springer, 1996.

[61] V.T. Rajlich and K.H. Bennett. A staged model for the software life cycle. IEEE
Computer, 33(7):66–71, jul 2000.

[62] Václav Rajlich and Václav. Software evolution and maintenance. In Proceedings of
the on Future of Software Engineering - FOSE 2014, pages 133–144. ACM, 2014.

[63] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution. In
Proceedings of the conference on The future of Software engineering - ICSE ’00,
pages 73–87. ACM, 2000.

[64] Isabelle Côté, Maritta Heisel, and Jeanine Souquières. On the Evolution of
Component-Based Software. pages 54–69. Springer, 2012.

[65] N. Sadou, D. Tamzalit, and M. Oussalah. A unified approach for software architecture
evolution at different abstraction levels. In Eighth International Workshop on
Principles of Software Evolution (IWPSE’05), pages 65–68. IEEE, 2005.

[66] Qianxiang Wang, Junrong Shen, Xiaopeng Wang, and Hong Mei. A component-
based approach to online software evolution. Journal of Software Maintenance and
Evolution: Research and Practice, 18(3):181–205, 2006.

[67] Jeffrey M. Barnes, David Garlan, and Bradley Schmerl. Evolution styles: foundations
and models for software architecture evolution. Software & Systems Modeling, 13(2):
649–678, 2014.

[68] Mikio Aoyama. Metrics and analysis of software architecture evolution with dis-
continuity. In Proceedings of the International Workshop on Principles of Software
Evolution, IWPSE ’02, pages 103–107. ACM, 2002.

[69] Mikio Aoyama. Continuous and discontinuous software evolution: Aspects of software
evolution across multiple product lines. In Proceedings of the 4th International
Workshop on Principles of Software Evolution, IWPSE ’01, pages 87–90. ACM, 2001.

[70] Seung-Pyo Jun, Hyoung Sun Yoo, and San Choi. Ten years of research change
using Google Trends: From the perspective of big data utilizations and applications.
Technological Forecasting and Social Change, 130:69–87, 2018.

156

[71] Hyunyoung Choi and Hal Varian. Predicting the Present with Google Trends.
Economic Record, 88:2–9, 2012.

[72] N Ren, Z Fang, H Sun, B Sun, and Yang Zhao. CSCW based customer relationship
management system. In The 6th International Conference on Networked Computing
and Advanced Information Management, pages 530–535, 2010.

[73] James D. Palmer and N. Ann Fields. Computer-Supported Cooperative Work. IEEE
Computer, 27(5):15–17, 1994.

[74] Uwe M Borghoff and Johann H Schlichter. Computer-Supported Cooperative Work:
Introduction to Distributed Applications. Springer, 2000.

[75] Nick Ismail. CRM will be the fastest growing software mar-
ket in 2018, 2018. URL http://www.information-age.com/
crm-fastest-growing-software-market-2018-gartner-123471378/.
Last visited at 29.05.2018.

[76] Michael Maoz and Brian Manusama. Magic Quadrant for the CRM Customer
Engagement Center, 2017. URL https://www.gartner.com/doc/reprints?
id=1-3XZENPT{&}ct=170414{&}st=sb. Last visited at 29.05.2018.

[77] Val Swisher. Glossary Versus Terminology - What’s the
Difference?, 2014. URL http://contentrules.com/
glossary-versus-terminology-whats-difference/. Last visited
at 05.08.2018.

[78] Laura Brandenburg. The Glossary: A Gateway to Clear Requirements and Com-
munication. URL http://www.bridging-the-gap.com/glossary/. Last
visited at 06.08.2018.

[79] Sanjay Kumar Dubey and Ajay Rana. A comprehensive assessment of object-oriented
software systems using metrics approach. International Journal on Computer Science
and Engineering, 2:2726–2730, 11 2010.

[80] Colin Robson. Real World Research: A Resource for Users of Social Research
Methods in Applied Settings. John Wiley & Sons Ltd, third. edition, 2011.

[81] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164,
2009.

[82] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical Research Methods
in Software Engineering. Springer, Berlin, Heidelberg, 2003.

[83] David V Thiel. Survey research methods, pages 192–229. Cambridge University
Press, 2014.

157

http://www.information-age.com/crm-fastest-growing-software-market-2018-gartner-123471378/
http://www.information-age.com/crm-fastest-growing-software-market-2018-gartner-123471378/
https://www.gartner.com/doc/reprints?id=1-3XZENPT{&}ct=170414{&}st=sb
https://www.gartner.com/doc/reprints?id=1-3XZENPT{&}ct=170414{&}st=sb
http://contentrules.com/glossary-versus-terminology-whats-difference/
http://contentrules.com/glossary-versus-terminology-whats-difference/
http://www.bridging-the-gap.com/glossary/

[84] Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying Software
Engineers: Data Collection Techniques for Software Field Studies. Empirical Software
Engineering, 10(3):311–341, 2005.

[85] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. Springer, 2012.

158

	Kurzfassung
	Abstract
	Introduction
	Motivating Example
	Problem Statement
	Contributions of this Thesis
	Thesis Structure

	Background & Related Work
	Software Architecture
	Collective Intelligence Systems
	System of Systems
	Multi-Tenant Systems
	Software Evolution
	Summary

	Research Questions and Approach
	Research Challenges
	Research Questions
	Research Methodology

	Survey of CIS Farm Platforms
	Survey Design
	Survey Results
	Summary

	Application Scenario: The Glossary Platform
	Definition of a Glossary
	Available Glossary Solutions
	Requirements for a Modern Glossary System
	Glossary Platform as Collective Intelligence System

	Characteristics of a CIS Farm Architecture Design
	System Characteristics
	Benefits of a CIS Farm Architecture

	Farm Architecture Design for CIS
	Terminology & Structure
	Delimitation to other Architecture Styles
	Architecture Overview
	Application of CIS Farm Architecture

	CIS Farm Evolution Approach
	Prerequisites
	Evolution Process
	Data Migration Process

	Application of CIS Farm Architecture Design Approach
	Initial System
	Evolution to CIS Farm Architecture
	Development of Prototype
	Lessons Learned

	Evaluation
	Study Design
	Results

	Discussion
	Conclusion
	Appendix
	Survey
	Activity sequence of the test instructions
	Structure of the Questionnaire

	Acronyms
	List of Figures
	List of Tables
	Bibliography

